
Week 7 (W) Page 1

CS 536 Announcements for Wednesday, March 6, 2024
Last Time

• wrap up CYK
• classes of grammars
• top-down parsing

Today
• review grammar transformations
• building a predictive parser
• FIRST and FOLLOW sets

Next Time
• predictive parsing and syntax-directed translation

LL(1) Predictive Parser

Predict the parse tree top-down

Parser structure
• 1 token lookahead

• parse/selector table

• stack tracking current parse tree's frontier

Necessary conditions
• left-factored

• free of left-recursion

Week 7 (W) Page 2

Review of LL(1) grammar transformations

Necessary (but not sufficient conditions) for LL(1) parsing
• free of left recursion – no left-recursive rules

• left-factored – no rules with a common prefix, for any nonterminal

Why left-recursion is a problem
Outside/high-level view
CFG snippet: xlist  xlist X | X
Current parse tree: xlist Current token: X

Inside/algorithmic-level view
CFG snippet: xlist  xlist X | X
Current parse tree: xlist Current token: X

Week 7 (W) Page 3

Removing left-recursion (review)
Replace
 A  A α | β
with
 A  β A'
 A'  α A' | ε

where β does not start with A (or may be ε)

Preserves the language (as a list of α's, starting with a β), but uses right recursion

Example

xlist  xlist X | ε

Week 7 (W) Page 4

Left factoring (review)
Removing a common prefix from a grammar
Replace
 A  αβ1 | αβ2 | ... | αβn | γ1 | γ2 | ... | γm
with
 A  αA' | γ1 | γ2 | ... | γm
 A'  β1 | β2 | ... | βn
where βi and γi are sequence of symbols with no common prefix

Note: γi may not be present, and one of the βi may be ε

Idea: combine all "problematic" rules that start with α into one rule αA'
 A' now represents the suffix of the problematic rules

Example 1

exp  < A > | < B > | < C > | D

Example 2

stmt  ID ASSIGN exp | ID (elist) | return
exp  INTLIT | ID
elist  exp | exp COMMA elist

Week 7 (W) Page 5

Building the parse table
Goal: given production lhs  rhs, determine what terminals would lead us to choose that
production

• what terminals could rhs possibly start with?

• What terminals could possibly come after lhs?

Idea: FIRST(rhs) = set of terminals that begin sequences derivable from rhs
Suppose top-of-stack symbol is nonterminal p and the current token is A and we have

• Production 1: p  α
• Production 2: p  β

FIRST lets us disambiguate:

• if A ∈ FIRST(α), then

• if A ∈ FIRST(β), then

• if A is in just one of them, then

FIRST sets
FIRST(α) is the set of terminals that begin the strings derivable from α, and also, if α can derive
ε, then ε is in FIRST(α).
Formally,

FIRST(α) =

For a symbol X

• if X is terminal: FIRST(X) = {X}

• if X is ε : FIRST(X) = {ε}

• if X is nonterminal : for each production X  Y1Y2Y3..Yn
• put FIRST(Y1) – ε into FIRST(X)
• if ε is in FIRST(Y1), put FIRST(Y2) – ε into FIRST(X)
• if ε is in FIRST(Y2), put FIRST(Y3) – ε into FIRST(X)
• ...
• if ε is in FIRST(Yi) for all i, put ε into FIRST(X)

Week 7 (W) Page 6

Example
Original CFG
expr  expr + term
 | term
term  term * factor
 | factor
factor  exponent ^ factor
 | exponent
exponent  INTLIT
 | (expr)

Transformed CFG

 FIRST FOLLOW

expr

expr'

term

term'

factor

factor'

exponent

 FIRST
expr  term expr'

expr'  + term expr'

expr'  ε

term  factor term'

term'  * factor term'

term'  ε

factor  exponent factor'

factor'  ^ factor

factor'  ε

exponent  INTLIT

exponent  (expr)

Week 7 (W) Page 7

Computing FIRST(α) (continued)
Extend FIRST to strings of symbols α

Let α = Y1Y2Y3..Yn
• put FIRST(Y1) – ε into FIRST(α)

• if ε is in FIRST(Y1), put FIRST(Y2) – ε into FIRST(α)
• if ε is in FIRST(Y2), put FIRST(Y3) – ε into FIRST(α)
• ...
• if ε is in FIRST(Yi) for all i, put ε into FIRST(α)

Given two productions for nonterminal p

• Production 1: p  α
• Production 2: p  β

FOLLOW sets
For single nonterminal a, FOLLOW(a) is the set of terminals that can appear immediately
to the right of a

Formally,
FOLLOW(a) =

Week 7 (W) Page 8

Computing FOLLOW sets
To build FOLLOW(a)

• if a is the start non-term, put EOF in FOLLOW(a)

• for each production x  α a β
• put FIRST(β) – ε into FOLLOW(a)
• if ε is in FIRST(β), put FOLLOW(x) into FOLLOW(a)

• for each production x  α a
• put FOLLOW(x) into FOLLOW(a)

Building the parse table

for each production x  α {

 for each terminal T in FIRST(α) {
 put α in table[x][T]
 }

 if ε is in FIRST(α) {

 for each terminal T in FOLLOW(x) {
 put α in table[x][T]
 }
 }
}

	CS 536 Announcements for Wednesday, March 6, 2024
	LL(1) Predictive Parser
	Review of LL(1) grammar transformations
	Removing left-recursion (review)
	Left factoring (review)
	Building the parse table
	FIRST sets
	Example
	Computing FIRST(α) (continued)
	FOLLOW sets
	Computing FOLLOW sets
	Building the parse table

