CS 536 Announcements for Wednesday, March 6, 2024

Last Time o
e wrap up CYK A§SDC\G\‘\'\V\“\’
e classes of grammars N~ Y 4e

e top-down parsing /\
Today (o\,‘\:\ xC Ay (b’rc\

e review grammar transformations
e building a predictive parser

e FIRST and FOLLOW sets — =X
Next Time / \
e predictive parsing and syntax-directed translation
(g ~(=x)
o bOc

TS\

LL(1) Predictive Parser
Predict the parse tree top-down

Parser structure
e 1 token lookahead
e parse/selector table

e stack tracking current parse tree's frontier

Necessary conditions
o left-factored

e free of left-recursion

Week 7 (W) Page 1

Review of LL(1) grammar transformations

Necessary (but not sufficient conditions) for LL(1) parsing
e free of left recursion — no left-recursive rules

e left-factored — no rules with a common prefix, for any nonterminal

Why left-recursion is a problem
Outside/high-level view
CFG snippet: xlist 2 xlist X | X

Current parse tree: Current token: X
How 2 ogow Qerse teer Depends on i hice
Ve D 4NN ot wove Ko

\ o / \5(—2 022 e ookaAnad

Inside/algorithmic-level view

CFG snippet: xlist > xlist X | X © \\,
Current parse tree: Current token: X
Vicg o\
*h __K EoF
. ¢ e ———

ylost
X
*A&Jd\") s)(aovx

X ovy S\ow
M

EofF
XeOR

Week 7 (W) Page 2

Removing left-recursion (review)

Replace head o& “‘r\'
A>Aq | @e
with
A A
ASOA | &
where B does not start with A (or may be €) A

A

/
/\
A = X
AN ’ @/\
A o

& O
€

Preserves the language (as a list of a's, starting with a), but uses right recursion

Example :
xiist > xlistX (&) \\[:\.\9(—"-) x\‘\:’r
it = € %\ | cLmoL \' 'ﬁ \'g\\ﬁ
x\s-é > A sl & _;7*\5’(—3 X\
"™
' = Kt g Sroeog W

o WX

Week 7 (W) Page 3

Left factoring (review)

Removing a common prefix from a grammar

Replace
A 9[0431 | a2] ... | 0‘541

with
A2 oA |yr]y2]...]ym
A'> B1|B2]...| Pn

where Bi and yi are sequence of symbols with no common prefix

vilvz|...|ym

Note: yi may not be present, and one of the i may be ¢

Idea: combine all "problematic" rules that start with a into one rule aA'
A' now represents the suffix of the problematic rules

Example 1
exp > <A>||<C>|D 2] et <%("\D
oA AY| O O
Example 2

stmt = |ID ASSIGN exp | ID (elist) | return
exp > INTLIT|ID
elist > exp|exp COMMA elist

At D D e | cetwen
! = ASSILN exp | Calist)
exp — INTLCE v

ey = exp e\l

elisy'—> ¢ \CoN\P\ ek

Week 7 (W)

Page 4

Building the parse table

Goal: given production /hs = rhs, determine what terminals would lead us to choose that
production

e, %ogh“b 0l T ouh xhat ’YAUQI“\;S[T-&-; che
~ a\eo v\‘\M ‘M‘!‘\Q\dg OO\A\J ‘\1\6\‘9&% On eorof ot <hiy ()okcf)

e what terminals could rhs possibly start with?

e What terminals could possibly come after /hs?

Idea: FIRST(rhs) = set of terminals that begin sequences derivable from rhs

Suppose top-of-stack symbol is nonterminal p and the current token is A and we have
e Production1:p 2> a
e Production 2: p >

FIRST lets us disambiguate:
e if A € FIRST(a), then Q(‘oéw—ﬂo« A Y a vickle YT
+ if A € FIRST(B), then QCe wuton L e wvie¥e O

e if Aisin just one of them, then \#@ Cotn M w\\{,)n Qvﬁw-ﬁm B We

FIRST sets
FIRST(a) is the set of terminals that begin the strings derivable from a, and also, if a can derive
g, then g is in FIRST(a). '
L8 @ W\N\‘:
Formally,

FIRST(0) = § T \ (Tes Ad=® T@\ v (T=¢ A 2 AL

For a symbol X
e if Xis terminal: FIRST(X) = {X}
o if Xis €:FIRST(X) = {€}

e if X is nonterminal : for each production X = Y1Y2Y3..Yn

— -t cnt AL

e put FIRST(Y1) - € into FIRST(X) e N0 dranogas \n
e ifeisin FIRST(Y1), put FIRST(Y2) - £ into FIRST(X) | 0wy fatermicdls

e ifgisin FIRST(Y2), put FIRST(Y3) — € into FIRST(X) C\RST e«
L

L

o ifgisin FIRST(Yi) for all i, put € into FIRST(X)

-l

Week 7 (W)

Page 5

Original CFG
expr > expr + term
| term
term > term * factor

| factor

factor 2 exgonent A factor

Example
Transformed CFG

Qxpr—9 Kecen expct

expe! 9 ¥ worm exq" \¢

“eren) Savror -*cg_rﬂ‘

Yese = ¥ 2&0{0\‘ "feﬂ'l' \t

| exponent
exponent > INTLIT Locror—= elporam
| (expr) ;%ch;,/\’w_\g
Q,)(ro\en‘\'-" INTLIT |\ (er(‘\
FIRST FOLLOW
| Ay (| EOF
expr & t =FolLlow (exor\ Eot \
M Nt (| EOF)
orm g ¢ = FoLlov ece) 4 FEOF)
factor Wi (¥ Eof D)
factor’ A T % X 6‘0? '\
xponent Itnx (A % x B3)
FIRST
expr - term expr' INTLT (
expr' - + term expr’ X
expr' 2> & t
term - factor term’ \NTL VT (
term’ - * factor term'’ %
term' 2> ¢ T
factor - exponent factor' WAL (_
factor > A factor N
factor > ¢ c
exponent = INTLIT INTL\Y
exponent 2> (expr) (

Week 7 (W)

Page 6

Computing FIRST(a) (continued)
Extend FIRST to strings of symbols a

— Wont 42 SUkinL FIRGT Sor o\ QNS of Q‘o‘\“vﬂ‘ﬂs

Leta=Y1Y2Y3..Yn

e put FIRST(Y1) — € into FIRST(a)
if € is in FIRST(Y1), put FIRST(Y2) — € into FIRST(a)
if € is in FIRST(Y2), put FIRST(Y3) — € into FIRST(a)

if € is in FIRST(Y;) for all i, put € into FIRST(a)

e Production1: p 2> a F\RsT (&\g/\obk Sor Gncret taen

e Production 2: p > B FI\RST (6

T-S;' °°\~| 4— \,\w.. H, Q\'dc gt \Qroc\uo-ﬂor\

TS both have ix Ofrtnl 15 ast LL(\)

T nethd ot) 1F one TIRST qor Wy £ tn W
\o o\ ot \J\\M «an{n«\s Coan Qo\\ou e

FOLLOW sets

For single nonterminal a, FOLLOW(a) is the set of terminals that can appear immediately

to the right of a .
J -m'm\w-\b
Formally,

{
FOLLOW(a) = ZT \ (‘(CZA & =¥ O\O\Tg\ vV (‘T—; EOF A oK o\\

Week 7 (W) Page 7

Computing FOLLOW sets

To build FOLLOW(a)
e if ais the start non-term, put EOF in FOLLOW(a)
e c—

¢ pOhrt i
e for each productiony > aaf
e put FIRST(B) - ¢ into FOLLOW(a) n d"““s&
e ifeisin FIRST(B), put FOLLOW(}_(_) into FOLLOW(a)

e for each production x > a a
e put FOLLOW(x) into FOLLOW(a)
ot FoLLow(x)

/ S\ / Z/mto FoLLov(a)
X
\ ?\'s im(\
o Yoo (s
R AN
Do rs

t

Building the parse table

for each production x =2 o {

for each terminal T in FIRST (o) {
put o in table[x][T]
}

if € is in FIRST (o) {

for each terminal T in FOLLOW (x) {
put o in table[x] [T]
}

Week 7 (W) Page 8

	CS 536 Announcements for Wednesday, March 6, 2024
	LL(1) Predictive Parser
	Review of LL(1) grammar transformations
	Removing left-recursion (review)
	Left factoring (review)
	Building the parse table
	FIRST sets
	Example
	Computing FIRST(α) (continued)
	FOLLOW sets
	Computing FOLLOW sets
	Building the parse table

