CS 536 Announcements for Monday, March 11, 2024
Programming Assignment 3 — due Friday, March 15
Midterm 2 — Thursday, March 21

Last Time
e review grammar transformations
e building a predictive parser
e FIRST and FOLLOW sets

Today
e review parse table construction
e predictive parsing and syntax-directed translation

Next Time
e static semantic analysis

Recap of where we are

Predictive parser builds the parse tree top-down
e 1 token lookahead
e parse/selector table
e stack tracking current parse tree's frontier

Building the parse table — given production /hs = rhs, determine what terminals would lead
us to choose that production

FIRST(a)={T|[(TeZAa=>*TR)V(T=gAa=>"¢)}

FOLLOW(a)={T|(TeZ As=>*aaTB)V (T =EOF As =>* ga) }

Week 8 (M) Page 1

FIRST and FOLLOW sets
FIRST(a) fora =y1y2.. vk
Add FIRST(y1) -{ ¢}
If €is in FIRST(y1ti-1), add FIRST(yi) — { € }
If € is in all RHS symbols, add ¢

FOLLOW(a)forx > aaf
If a is the start, add EOF

Add FIRST(B) —{ €}
Add FOLLOW(x) if & is in FIRST(B) or B is empty

Note that

FIRST sets
e only contain alphabet terminals and €
e defined for arbitrary RHS and nonterminals
e constructed by started at the beginning of a production

FOLLOW sets
e only contain alphabet terminals and EOF
e defined for nonterminals only
e constructed by jumping into production

Putting it all together
e Build FIRST sets for each nonterminal

e Build FIRST sets for each production's RHS
e Build FOLLOW sets for each nonterminal
e Use FIRST and FOLLOW sets to fill parse table for each production

Building the parse table

for each production x =2 o {

for each terminal T in FIRST (o) {
put o in table[x] [T]

t

if € is in FIRST (o) {
for each terminal T in FOLLOW(x) {

put o in table[x] [T]

}

Week 8 (M)

Page 2

Example

CFG
s -> aCl|ba
a -> AB]|Cs
b 2> Djle

FIRST and FOLLOW sets

FIRST sets FOLLOW sets

> acC
2> ba
> AB
2> Cs
b =>D
b —>¢

O | n | O»

Parse table
for each production x 2 o

for each terminal T in FIRST (o)
put o in table[x] [T]

if € is in FIRST (o)
for each terminal T in FOLLOW (x)
put o in table[x] [T]

A B C D EOF

Week 8 (M) Page 3

CFG

> (s)

Example

| {s} | e

FIRST and FOLLOW sets

FIRST sets

FOLLOW sets

S

s 2 (s)

s 2>2{s}

S 2>¢

Parse table

for each production x 2 o

for each terminal T in FIRST (o)

put

o in table[x] [T]

if € is in FIRST (o)
for each terminal T in FOLLOW (x)

put o in table[x] [T]

EOF

Week 8 (M)

Page 4

Parsing and syntax-directed translation

Recall syntax-directed tranlation (SDT)

To translate a sequence of tokens

e build the parse tree

e use translation rules to compute the translation of each non-terminal in the parse tree,

bottom up

¢ the translation of the sequence is the translation of the parse tree's root non-terminal

CFG:

expr —> expr +term

| term

- term * factor
| factor
factor > INTLIT

| (expr)

term

SDT rules:

expri.trans = exprz.trans + term.trans
expr.trans = term.trans

termq.trans = termz.trans * factor.trans
term.trans = factor.trans

factor.trans = INTLIT.value
factor.trans = expr.trans

The LL(1) parser never needed to explicitly build the parse tree
— it was implicitly tracked via the stack.

Instead of building parse tree, give parser a second, semantic stack

SDT rules are converted to actions

CFG:

expr -> expr + term

| term

- term * factor
| factor
factor > INTLIT

| (expr)

term

Week 8 (M)

SDT actions:

tTrans = pop; eTrans = pop; push(eTrans + tTrans)
tTrans = pop; push(tTrans)

fTrans = pop; tTrans = pop; push(tTrans * fTrans)
fTrans = pop; push(fTrans)

push(INTLIT.value)
eTrans = pop; push(eTrans)

Page 5

Parsing and syntax-directed translation (cont.)

Augment the parsing algorithm
e number the actions
e when RHS of production is pushed onto symbol stack, include the actions
e when action is the top of symbol stack, pop & perform the action

CEG: SDT actions:

expr > expr + term tTrans = pop; eTrans = pop; push(eTrans + tTrans)
| term

term —-> term * factor fTrans = pop; tTrans = pop; push(tTrans * fTrans)
| factor

factor > INTLIT push(INTLIT.value)
| (expr)

Placing the action numbers in the productions
e action numbers go
e after their corresponding non-terminals
e Dbefore their corresponding terminal

Building the LL(1) parser

1) Define SDT using the original grammar
e write translation rules
e convert translation rules to actions that push/pop using semantic stack
e incorporate action #s into grammar rules

2) Transform grammar to LL(1)

3) Compute FIRST and FOLLOW sets

4) Build the parse table

Week 8 (M) Page 6

Example SDT on transformed grammar

Original CFG:

expr > expr+term #1
| term

term - term * factor #2
| factor

factor > #3 INTLIT
| (expr)

Transformed CFG:
expr -

term expr'
expr' = +term#1 expr'|¢
term -> factor term’

term' - * factor #2 term'| ¢

factor > #3 INTLIT | (expr)

Transformed CFG:

expr —-> term expr'

expr' > +term #1 expr'
| ¢

term - factor term’

term' - * factor #2 term’
| ¢
factor > #3 INTLIT | (expr)

SDT actions:
#1 : tTrans = pop;
eTrans = pop;
push(eTrans + tTrans)
#2 : fTrans = pop;
tTrans = pop;
push(tTrans * fTrans)

#3 : push(INTLIT.val)

Parse table

+ * () INTLIT | EOF
expr term expr' term expr'
expr' | +term #1 expr' € €
term factor term' factor term'
term' € * factor #2 term’ € €
factor (expr) #3 INTLIT
Week 8 (M)

Page 7

What about ASTs?
Push and pop AST nodes on the semantic stack
Keep references to nodes that we pop

Original CFG: Transformed CFG:
expr > expr+term #1 expr > term expr'
| term expr' = +term #1 expr'
| €
term > #2 INTLIT term > #2 INTLIT
SDT actions: Parse table:

#1 : tTrans = pop;
eTrans = pop;
push(

#2 : push(

Week 8 (M) Page 8

	CS 536 Announcements for Monday, March 11, 2024
	Recap of where we are
	FIRST and FOLLOW sets
	Example
	Example
	Parsing and syntax-directed translation
	Parsing and syntax-directed translation (cont.)
	Building the LL(1) parser
	Example SDT on transformed grammar
	What about ASTs?

