
Week 8 (M) Page 1

CS 536 Announcements for Monday, March 11, 2024
Programming Assignment 3 – due Friday, March 15
Midterm 2 – Thursday, March 21
Last Time
• review grammar transformations
• building a predictive parser
• FIRST and FOLLOW sets

Today
• review parse table construction
• predictive parsing and syntax-directed translation

Next Time
• static semantic analysis

Recap of where we are

Predictive parser builds the parse tree top-down
• 1 token lookahead
• parse/selector table
• stack tracking current parse tree's frontier

Building the parse table – given production lhs  rhs, determine what terminals would lead
us to choose that production

FIRST(α) = { T | (T ϵ Σ ∧ α =>* Tβ) ∨ (T = ε ∧ α =>* ε) }

FOLLOW(a) = { T | (T ϵ Σ ∧ s =>* αaTβ) ∨ (T = EOF ∧ s =>* αa) }

Week 8 (M) Page 2

FIRST and FOLLOW sets
FIRST(α) for α = y1 y2 … yk

Add FIRST(y1) – { ε }
If ε is in FIRST(y1 to i-1), add FIRST(yi) – { ε }
If ε is in all RHS symbols, add ε

FOLLOW(a) for x  α a β
If a is the start, add EOF
Add FIRST(β) – { ε }
Add FOLLOW(x) if ε is in FIRST(β) or β is empty

Note that
FIRST sets
• only contain alphabet terminals and ε
• defined for arbitrary RHS and nonterminals
• constructed by started at the beginning of a production

FOLLOW sets
• only contain alphabet terminals and EOF
• defined for nonterminals only
• constructed by jumping into production

Putting it all together
• Build FIRST sets for each nonterminal

• Build FIRST sets for each production's RHS

• Build FOLLOW sets for each nonterminal

• Use FIRST and FOLLOW sets to fill parse table for each production

Building the parse table

for each production x  α {
 for each terminal T in FIRST(α) {
 put α in table[x][T]
 }
 if ε is in FIRST(α) {
 for each terminal T in FOLLOW(x) {
 put α in table[x][T]
 }
 }
}

Week 8 (M) Page 3

Example
CFG

s  a C | b a
a  A B | C s
b  D | ε

FIRST and FOLLOW sets

 FIRST sets FOLLOW sets

s
a
b

s  a C

s  b a
a  A B
a  C s
b  D

b  ε

Parse table

for each production x  α

 for each terminal T in FIRST(α)
 put α in table[x][T]

 if ε is in FIRST(α)
 for each terminal T in FOLLOW(x)
 put α in table[x][T]

 A B C D EOF

s

a

b

Week 8 (M) Page 4

Example
CFG

s  (s) | { s } | ε

FIRST and FOLLOW sets

 FIRST sets FOLLOW sets

s
 s  (s)
 s  { s }

 s  ε

Parse table

for each production x  α

 for each terminal T in FIRST(α)
 put α in table[x][T]

 if ε is in FIRST(α)
 for each terminal T in FOLLOW(x)
 put α in table[x][T]

 () { } EOF

s

Week 8 (M) Page 5

Parsing and syntax-directed translation
Recall syntax-directed tranlation (SDT)
To translate a sequence of tokens
• build the parse tree
• use translation rules to compute the translation of each non-terminal in the parse tree,

bottom up
• the translation of the sequence is the translation of the parse tree's root non-terminal

CFG: SDT rules:

expr  expr + term expr1.trans = expr2.trans + term.trans
 | term expr.trans = term.trans
term  term * factor term1.trans = term2.trans * factor.trans
 | factor term.trans = factor.trans
factor  INTLIT factor.trans = INTLIT.value
 | (expr) factor.trans = expr.trans

The LL(1) parser never needed to explicitly build the parse tree
– it was implicitly tracked via the stack.

Instead of building parse tree, give parser a second, semantic stack

SDT rules are converted to actions

CFG: SDT actions:

expr  expr + term tTrans = pop; eTrans = pop; push(eTrans + tTrans)
 | term tTrans = pop; push(tTrans)
term  term * factor fTrans = pop; tTrans = pop; push(tTrans * fTrans)
 | factor fTrans = pop; push(fTrans)
factor  INTLIT push(INTLIT.value)
 | (expr) eTrans = pop; push(eTrans)

Week 8 (M) Page 6

Parsing and syntax-directed translation (cont.)
Augment the parsing algorithm
• number the actions
• when RHS of production is pushed onto symbol stack, include the actions
• when action is the top of symbol stack, pop & perform the action

CFG: SDT actions:

expr  expr + term tTrans = pop; eTrans = pop; push(eTrans + tTrans)
 | term
term  term * factor fTrans = pop; tTrans = pop; push(tTrans * fTrans)
 | factor
factor  INTLIT push(INTLIT.value)
 | (expr)

Placing the action numbers in the productions
• action numbers go

• after their corresponding non-terminals
• before their corresponding terminal

Building the LL(1) parser
1) Define SDT using the original grammar
• write translation rules
• convert translation rules to actions that push/pop using semantic stack
• incorporate action #s into grammar rules

2) Transform grammar to LL(1)

3) Compute FIRST and FOLLOW sets

4) Build the parse table

Week 8 (M) Page 7

Example SDT on transformed grammar

Original CFG:

expr  expr + term #1
 | term

term  term * factor #2
 | factor

factor  #3 INTLIT
 | (expr)

Transformed CFG:

expr  term expr'

expr'  + term #1 expr' | ε
term  factor term'

term'  * factor #2 term' | ε
factor  #3 INTLIT | (expr)

Transformed CFG:

expr  term expr'
expr'  + term #1 expr'
 | ε
term  factor term'
term'  * factor #2 term'
 | ε
factor  #3 INTLIT | (expr)

SDT actions:

#1 : tTrans = pop;
 eTrans = pop;
 push(eTrans + tTrans)
#2 : fTrans = pop;
 tTrans = pop;
 push(tTrans * fTrans)
#3 : push(INTLIT.val)

Parse table

 + * () INTLIT EOF

expr term expr' term expr'

expr' + term #1 expr' ε ε

term factor term' factor term'

term' ε * factor #2 term' ε ε

factor (expr) #3 INTLIT

Week 8 (M) Page 8

What about ASTs?
Push and pop AST nodes on the semantic stack
Keep references to nodes that we pop

Original CFG:

expr  expr + term #1
 | term

term  #2 INTLIT

SDT actions:

#1 : tTrans = pop;
 eTrans = pop;
 push(
#2 : push(

Transformed CFG:

expr  term expr'
expr'  + term #1 expr'
 | ε
term  #2 INTLIT

Parse table:

	CS 536 Announcements for Monday, March 11, 2024
	Recap of where we are
	FIRST and FOLLOW sets
	Example
	Example
	Parsing and syntax-directed translation
	Parsing and syntax-directed translation (cont.)
	Building the LL(1) parser
	Example SDT on transformed grammar
	What about ASTs?

