
Week 8 (W) Page 1

CS 536 Announcements for Wednesday, March 13, 2024
Programming Assignment 3 – due Friday, March 15
Midterm 2 – Thursday, March 21
Last Time
• building a predictive parser
• predictive parsing and syntax-directed translation

Today
• static semantic analysis
• name analysis

Next Time
• continue name analysis
• exam review

Static Semantic Analysis

Two phases
• name analysis (aka name resolution)

• for each scope
• process declarations

– add entries to symbol table
– report multply-declared names

• process statements

– update IdNodes to point to appropriate symbol table entry
– find uses of undeclared variables

• type checking

• process statements
– use symbol table to find types of each expression & sub-expression
– find type errors

Week 8 (W) Page 2

Why do we need this phase?
Code generation
• different operations use different instructions

• consistent variable access
• integer addition vs floating-point addition
• operator overloading

Optimization
• symbol table entry serves to identify which variable is used

• can help in removing dead code (with some further analysis)
• note: pointers can make these tasks hard

Error checking

Semantic error analysis
For non-trivial programming languages, we run into fundamental undecidability problems:
• does the program halt?
• does the program crash?

Even with simplifying assumptions (sometimes infeasible in practice) as well
• combinations of thread interleavings
• inter-procedural data analysis

Goal of static semantic analysis: catch some obvious errors

•

•

•

Week 8 (W) Page 3

Name analysis
Associating IDs with their uses
Need to bind names before we can do type analysis
Questions to consider:

• What definitions do we need about identifiers?

• How do we bind definitions and uses together?

Symbol Table
= (structured) dictionary that binds a name to information we need

Each entry in the symbol table stores a set of attributes:

• kind

• type

• nesting level

• runtime location

Symbol table operations
• insert entry
• lookup name
• add new sub-table
• remove/forget a sub-table

Implementation considerations
• efficiency of access is important

• size unknown ahead of time

• don't need to delete entries

Week 8 (W) Page 4

Scoping
scope = block of code in which a name is visible/valid

No scope (flat name scope)

Static/most-nested scope

Kinds of scoping
static

dynamic

Dynamic scoping example
What does this print, assuming dynamic scoping?

void main() {
 int x = 10;
 f1();
 g();
 f2();
}
void f1() {
 String x = "hello";
 g();
}
void f2() {
 double x = 2.5;
 f1();
 g();
}
void g() {
 print(x);
}

Week 8 (W) Page 5

Scoping issues to consider
Can the same name be used in multiple scopes?
variable shadowing
Do we allow names to be reused in What about when the kinds are different?
nesting relations?

void verse(int a) { void chorus(int a) {
 int a; int chorus;
 if (a) { }
 int a;
 if (a)
 int a;
 }
 }
}

overloading
Same name; different type

int bridge(int a) { … }
bool bridge(int a) { … }
bool bridge(bool a) { … }
int bridge(bool a, bool b) { … }

How do we match up uses to declarations?
Determine which uses correspond to which declarations

int k = 10, x = 20;
void foo(int k) {
 int a = x ;
 int x = k ;
 int b = x ;
 while (...) {
 int x;
 if (x == k) {
 int k, y;
 k = y = x ;
 }
 if (x == k) {
 int x = y ;
 }
 }
}

Week 8 (W) Page 6

Scoping issues to consider (cont.)
Where does declaration have to appear relatative to use?
forward references
How do we implement it?

void music(){
 lyrics();
}
void lyrics() {
 music();
}

Scope example
What uses and declarations are OK in this Java code?

class animal {

 // methods

 void attack(int animal) {
 for (int animal = 0; animal < 10; animal++) {
 int attack;
 }
 }
 int attack(int x) {
 for (int attack = 0; attack < 10; attack++) {
 int animal;
 }
 }

 void animal() { }

 //fields
 double attack;
 int attack;
 int animal;
}

Week 8 (W) Page 7

Name analysis for base
base is designed for ease of symbol table use
• statically scoped
• global scope plus nested scopes
• all declarations are made at the top of a scope
• declarations can always be removed from table at end of scope

base scoping rules
• use most deeply nested scope to determine binding
• variable shadowing allowed
• formal parameters of function are in same scope as function body

Walk the AST
• put new entries into the symbol table when a declaration is encountered
• augment AST nodes where names appear (both declarations & uses) with a link to the

relevant object in the symbol table

Symbol-table implementation
• use a list of hashmaps

Example
void f{integer a, integer b} [
 logical x.
 while … [
 integer x, y.
 …
]
]
void g{} [
 f().
]

Week 8 (W) Page 8

Symbol kinds
Symbol kinds (= types of identifiers)

• variable

• function declaration

• tuple declaration

Implementation of Sym class
Many options, here's one suggestion

• Sym class for variable definitions

• FnSym subclass for function declarations

• TupleDefSym subclass for tuple type definitions

• TupleSym subclass for when you want an instance of a tuple

Symbol tables and tuples
• Compiler needs to

• for each field: determine type, size, and offset with the tuple
• determine overall size of tuple
• verify declarations and uses of something of a tuple type are valid

• Idea: each tuple type definition contains its own symbol table for its field declarations
• associated with the main symbol table entry for that tuple's name

	CS 536 Announcements for Wednesday, March 13, 2024
	Static Semantic Analysis
	Why do we need this phase?
	Semantic error analysis
	Name analysis
	Symbol Table
	Scoping
	Scoping issues to consider
	Scoping issues to consider (cont.)
	Scope example
	Name analysis for base
	Example
	Symbol kinds
	Implementation of Sym class
	Symbol tables and tuples

