CS 536 Announcements for Monday, April 1, 2024

Last Time
e type checking
e type-system concepts
e type-system vocabulary
e Dbase
e typerules
e how to apply type rules

Today
e runtime environments
runtime storage layout
activation records
static allocation
stack allocation
what happens on function call, entry, return

Next Time
e parameter passing

Type checking in base
base's type system

e primitive types: integer logical wvoid

e type constructors: tuple

e coercion: a logical cannot be used as an integer is expected and vice versa
Type errors in base

e operators applied to operands of wrong type

e expressions that, because of context, must be a particular type but are not

e related to function calls
Type checking

e Recursively walks the AST to
e determine the type of each expression and sub-expression using the type rules of
the language
e find type errors

e Add a typeCheck method to AST nodes

Week 10 (M) Page 1

Type checking (cont.)
Type checking: errors
Goals: >
— . . P
e report as many distinct errors as possible = donet e P “&d. \ erco
e don't report same error multiple times — avoid error cascading — \“42!'(\0.\\\‘ 'MZA 45 keo v

Introduce internal error type (f; an e \nay ,évwh Le@t\

e when type incompatibility is discovered (’ePoN'e(\
e report the error
e pass error up the tree

e when a type check gets error as an operand
e don't (re)report an error
e pass error up the tree

Example:

integer a.

logaical b.
a@'rue+i}+2§+b).
b =%2.

Week 10 (M)

Page 2

Back to the big picture

Before code generation, we need to consider the runtime environment.
= underlying software & hardware configuration assumed by the program

Program piggybacks on the operating system (OS)
e provides functions access to hardware
e provides illusion of uniqueness
e enforces some boundaries on what is allowed

Compiler must use runtime environment as best it can
e limited # of very fast registers to do computation
e comparatively large region of memory to hold data
e some basic instructions from which to build more complex behaviors

We need to create/impose conventions on the way our program accesses memory
e assembly code enforces very few rules
e conventions help to guarantee separately developed code works together

- fn\\oub r\o&u\{pt‘\‘\ ‘\
— \nLTLesey QT 0 Benvn™ QS&\C\Q‘\&\\

Issues to consider
Variables
e How are they stored?

¢ What happens when a variable's value is needed?

How do functions work?
e What information should be stored for each function?
e What should happen when client code calls a function?
e What should happen when a function is entered?

e What should happened when a function returns?

Week 10 (M)

Page 3

General memory layout

o \ow GMP
| 93
OxHo00 e
L/ - \f\\hgﬂ thv

Memory layout: static allocation

Region for global memory

One "frame" for each procedure
e memory "slot" for each local, parameter
e memory "slot" for caller

Every time a function is called,
its names (local varibles & parameters)
refer to the same location in memory

x Sast awesy o) namey
+ 00 qutnend Kor el man uleaions
— 0o CRUS\ON

= Ao dYynGmiL LALTY LN o\\\ocmm
enMexed Vs

Week 10 (M)

[

. 10w

Stat\v dntin

51

e —

S1

\

S

Page 4

Memory layout: stack allocation

Allocate one activation record (AR) per invocation
e use the stack
e push a new AR on function entry
e pop AR on function exit
e toreduce the size, put static data in the global area

Scnne
\

Stack size not known at compile time
e don't know (at compile-time) how many ARs there will be
e size of local variables may not be known
e each AR keeps track of the previous AR's boundaries

Activation record keeps track of
e local variables
¢ info about the call made by the caller
e data context

enow,)\ {0\&0) AHU“«\‘\.\L%W:QN“\?A aS'
AKX Wil WA Caee Q(fti\ wWeS cm\\e(\

e control context

AERN W € Xnow codt Phvt
\awot) anet Kexn

Non-local dynamic memory

Don't always want all data allocated in a function call to disappear on return

WwWonx T2 be a2\l t» ente ,e%,\'\r\\% \\'795

Don't know how much space we'll need

o \ocaxy many Sudn obis O‘F Vor bt 51208

The Heap

i)
e region of memory independent of the stack ‘1“0\\"'\\“.\1

N\ocp< 0\

e allocated according to calls in the program MQ«\QV\'

e how is memory "given back"?
- Q" of renenee sQo&\Ql% When no
\"’“‘-50' NG (O\

- Canrerl .ef\\liht\v\&v(d L4ec nindd
N0 NGty (‘.m.\\\1 whLN N \&Nkw N %
(Jave)

Week 10 (M)

by

‘3\ M\ Vors

—

\\\' 0‘\1\

\aw

i code

03\0\003\ 7 o
SXatiy, JCW

Coy swing

\ ‘\‘Wl‘n\s

Page 5

Function calls

Instruction pointer ($ip) tracks the line (address) of code that it is executing
» if $ip points to code generated for some function, we'll say we are in that function

caller = function doing the invocation

callee = function being invoked A
G-,
$sp (stack pointer) — points to top of stack (12 crusgd \/000\{“"\'\

$fp (frame pointer) — points to bottom of current AR

Activation records revisited

<90

oW
adir ‘bw\
\laria.ue\

Save&‘
ce‘\\sw“ S

conkeol A

Ceiucn addrebs e T
Qe a s R

Wiah SQNCYUS KeC Coxurn WL
~ddf6

Week 10 (M) Page 6

Function entry: caller responsibilities
Store the caller-saved registers in it's own AR

Set up the actual parameters
e set aside slot for the return value
e push parameters onto the stack

Copy return address out of $ip
Jump to first instruction of the callee

Function entry: callee responsibilities

Save $fp (it will need to be restored when the callee returns
Update the base of the new AR to be the end of the old AR
Save callee-saved registers (if necessary)

Make space for locals

Function exit: callee responsibilities

lesy

’\—_

Voc)
V'G\\‘ \nowg

ca\lee - swod
Caf\‘\'ra\ \\f\\(é'éf

cetuta cd)c 2y

Qo\\‘o-ms

S Qe Kot rot vl
C\E Save)

Colec o AR N 8s

<5

Set the return value /\

Restore callee-saved registers- \ —

ol vors
coeNeg - savdd

Grab stored return address —
Restore old $sp Ca\c '0asa oa, ‘CP
Restore old $fp S\?ro,a antrol Iinle =

Conxtol l'inlC

et addhegy | < fp

Jump to the stored return address

Qd‘ms
< 5S¢

CCA WS n WL

Function exit: caller responsibilities

Pop the return value (or copy from register)

Restore caller-saved registers

Week 10 (M)

%\\QF/SAV&\]

Al er's AR
- <5

L

Page 7

Example

#1 integer summation{integer max} [
#2 integer sum.

#3 integer k.

#4 sum = 0.

#5 k = 1.

#6 while k <= max |
#7 sum = sum + k.
#8 k++.

#9]

#10 return sum.

#11]

#12 void main{} [

#13 integer x.

#14 X = summation (4).
#15 write << x.

#16]

Week 10 (M) Page 8

	CS 536 Announcements for Monday, April 1, 2024
	Type checking in base
	Type checking (cont.)
	Back to the big picture
	Issues to consider
	General memory layout
	Memory layout: static allocation
	Memory layout: stack allocation
	Non-local dynamic memory
	Function calls
	Activation records revisited
	Function entry: caller responsibilities
	Function entry: callee responsibilities
	Function exit: callee responsibilities
	Function exit: caller responsibilities
	Example

