CS 536 Announcements for Monday, April 8, 2024

Last Time
e parameter passing
e terminology
o different styles
¢ what they mean
¢ how they look on the stack

Today
e wrap up parameter passing
e compare and contrast
e accessing variables at runtime
e how do we deal with variables and scope?
e how do we organize activation records?
e how do we retrieve values of variables from activation records?

Next Time
e code generation

Code generation and parameter passing
Efficiency considerations (calls, accesses by callee, return)

Pass by value
e copy values into callee's AR
e callee directly accesses AR locations

Pass by reference
e copy addresses into callee's AR
e access in callee via indirection

Pass by value-result
o strictly slower than pass by value
e need to know where to copy values back on return

Handling objects

In Java, variables hold the addresses of objects
e no overhead of copying entire objects

In C++, variables are objects in the stack

Week 11 (M)

Page 1

Compare and contrast
Pass by value

e no aliasing
e easier for static analysis

e called function (callee) is faster

Pass by reference
e more efficient when passing large objects
e can modify actuals

Pass by value-result
e more efficient than pass by refence for small objects

e if no aliasing, can be implemented as pass by reference for large objects

but determining if there is aliasing (and what is aliased) is a challenging task (in general)

Accessing variables at runtime

local variables
e declared and used in the same function
o further divided into "block" scope in base

global variables
e declared at the outermost level of the program
e in C/C++/base

e inJava

non-local variables (i.e., from nested scopes)
o for static scope: variables declared in an outer scope
o for dynamic scope: variables declared in the calling context

Week 11 (M) Page 2

Accessing local variables at runtime

Local variables
e includes parameters and all local variables in a function
e stored in activation record of function in which they are declared
e accessed using offset from frame pointer

Accessing the stack
e general anatomy of MIPS instruction

e use "load" and "store" instructions
e every memory cell has an address
e calculate that memory address, then move data from/to that address

void test (int x, int y) { Activation record for test
int a, b;

if (...) |
int s;

}
else {
int t, u, v;

u=>bo + vy,

MIPS codefor u = b + y

lw Stl, -12(Sfp)

lw $t2, 8(Sfp)
add $t3, S$tl, st2
sw St3, -24(Sfp)

Week 11 (M) Page 3

Simple memory-allocation scheme
Reserve a slot for each variable in the function
Algorithm (for each function)
set offset = +4

for each parameter
add name to symbol table
offset += size of parameter

offset = -4

offset -= size of callee saved registers

for each local
offset -= size of wvariable
add name to symbol table

Implementation
e add an offset field to each symbol table entry
e during name analysis, add the offset along with the name
e walk the AST performing decrements at each declaration node

Example
void test(int x, int vy) {
int a, b;

if (...) |
int s;

}

else {
int t, u, v;
u=">b+ y;

Accessing global variables at runtime

Place in static data area
e in MIPS, handled with a special storage directive
e variables referred to by name, not address

Note: space allocated directly at compile time (never needs to be deallocated)

Example

.data
x: .word 10

.text
lw $t0, x # load from x into StO
sw 3t0, x # store from $t0 into x

Week 11 (M) Page 4

Accessing non-local variables at runtime

Two situations

o static scope

e variable declared in one procedure and accessed in a nested one

e dynamic scope
any variable x that is not declared locally resolves to instance of x in the AR closest

to the current AR

Example: static non-local scope

function main () {
int a = 0;

function subprog() {
a=a+ 1;

}

Example: static non-local scope

void procA () {
int x, y;
void procB () {
print x;
}
void procC () {
int z;
void procD() {
int x;
X =2z + y;
procB () ;

Week 11 (M) Page 5

Access links
Add additional field in the AR (called access link, or static link)

How access links work
e we know how many /evels to traverse statically

Setting up access links

void procA () {
int x, y;
void procB () {
print x;
}
void procC () {
int z;
void procD() {
int x;
X =z + y;
procB () ;

}
Handling use of non-local variable x (at compile time)
e each variable keeps track of nesting level in which it is declared

e when x is used in procedure P

o follow predetermined # of links to get to AR for procedure in which x is declared

MIPS (assume $fp is location of access link)

lw St0, 0(3fp)
lw $t0, ($t0)

lw $t0, -12(St0)
Week 11 (M) Page 6

Using a display

Idea: avoid run-time overhead of following access links by having a global array (called the
display) containing links to the procedures that lexically enclose the current procedure

How it works
e given procedure P at nesting level k is currently executing
e display[0], display[l], ..., display[k-2] hold pointers to ARs of the most
recent activations of the k-1 procedures that enclose P
e display[k-1] holds pointerto P 's AR
e to access non-local variable x declared in nesting level n
e usedisplay[n-1] togetto AR that holds x
e then use regular offset (within AR) to get to x

How to maintain the display in the code
e add new "save-display" field to AR
e when procedure P at nesting level k is called
e save current value of display[k-1] in save-display field of P 's AR
e setdisplay[k-1] to pointto save-display field of P 's AR
e when procedure P is ready to return
e restore display[k-1] using value in save-display field

Example
void procA() {
int x, vy;
void procB () {
print x;
}
void procC () {
int z;
void procD () {
int x;
X =2z t+ Yy
procB () ;

T = X~
[
Q o w

Week 11 (M) Page 7

Dynamic non-local scope

Example

function main () {
int a = 0;
funl () ;
fun2 () ;

t

function fun2 () {
int a = 27;
funl () ;

}

function funl () {
a=a + 1;

}

Key point — we don't know which non-local variable we are refering to

Two ways to set up dynamic access
e deep access — somewhat similar to access links
e shallow access — somewhat similar to displays

Deep access

e if the variable isn't local
e follow control link to caller's AR
e check to see if it defines the variable
¢ if not, follow the next control link down the stack

e note that we need to know if a variable is defined with that name in an AR
¢ usually means we'll have to associate a name with a stack slot

Shallow access
e Kkeep a table with an entry for each variable declaration
e compile a direct reference to that entry

e at function call on entry to function F
e F saves (in its AR) the current values of all variables that F declares itself

e F restores these values when it finishes

Week 11 (M) Page 8

	CS 536 Announcements for Monday, April 8, 2024
	Code generation and parameter passing
	Compare and contrast
	Accessing variables at runtime
	Accessing local variables at runtime
	Simple memory-allocation scheme
	Accessing global variables at runtime
	Accessing non-local variables at runtime
	Example: static non-local scope
	Access links
	Using a display
	Dynamic non-local scope

