CS 536 Announcements for Monday, April 8, 2024

Last Time
e parameter passing
e terminology
o different styles
¢ what they mean
¢ how they look on the stack

Today
e wrap up parameter passing
e compare and contrast
e accessing variables at runtime
e how do we deal with variables and scope?
e how do we organize activation records?
e how do we retrieve values of variables from activation records?

Next Time
e code generation

Code generation and parameter passing
Efficiency considerations (calls, accesses by callee, return)

Pass by value
e copy values into callee's AR = 5\0\—'
e callee directly accesses AR locations ~ Q&)‘(

Pass by reference
e copy addresses into callee's AR~ QG-‘:’(
e access in callee via indirection- <\ s

Pass by value-result
o strictly slower than pass by value
e need to know where to copy values back on return

Handling objects

In Java, variables hold the addresses of objects
e no overhead of copying entire objects

In C++, variables are objects in the stack

— e QoIS 4o eBOEs N T G e Sictoncy

Week 11 (M) Page 1

Compare and contrast
Pass by value

e no aliasing -—S:eng' A wonted 08 eﬁews

o easier for static analysis (esp. OQ“'\"\:W\\W\\

e called function (callee) is faster — no \\«3'\900’(;9'\
Sl (& wpw‘wosog- W\ns) Yoy YAL AmL

Pass by reference

e more efficient when passing large objects

e can modify actuals

ConoX ok in (K& — Qoo by e it ner cllowdd <o WL
mod\'gie} - gom‘,i\,gc redks &
ﬁives uorninxl ere o

Pass by value-result
e more efficient than pass by refence for small objects = no ‘\«3\?%‘“0 N
e if no aliasing, can be implemented as pass by reference for large objects
- 50 X\ oSk enx

but determining_ijthere is aliasing (and what is aliased) is a challenging task (in general)

Accessing variables at runtime

local variables
e declared and used in the same function
o further divided into "block" scope in base

global variables
 declared at the outermost level of the program

e inCiCttbase — oy)lobdhs \nreag K.

e inJava = closy (A OG- Xa, e S
t _SONV@ Kc* Vor&

non-local variables (i.e., from nested scopes)
(. o for static scope: variables declared in an outer scope
(o for dynamic scope: variables declared in the calling context

Com il - T\val VS Cun- X\l
aesred e (Sewa
Neste) Qcot.uh\ces (Q@su»\\

Week 11 (M) Page 2

Accessing local variables at runtime
Local variables
e includes parameters and all local variables in a function
e stored in activation record-:)f function in which they are declared

H . S .
e accessed using offset from frame pointer

Accessing the stack

general anatomy of MIPS instruction
Oplode erraadi- 00 mIZ

use "load" and "store" instructions
every memory cell has an address
calculate that memory address, then move data from/to that address

void test (int x, int y) { Activation record for test
int a, b; <5e
v -2%
if (...) |
int s; W =2
.{_ -0
} -lb
else { S
int t, u, v; o -\
. -9
u=">b + y; o : N
} (Dc\‘\'ro\ ik -4
; CUAn addTesY —%e
X Y
N %
MIPS codefor u = b + vy
e Comment Sqebo\
) <
| ads ¢ \
J;% ey epx vane@&c«g- —“—-\:-Q:\-é- GS 0‘ ‘3?"%
GO et \ven (‘(Z's\ts‘\d~
lw $t2, 8(Sfp) # \ood
add $t3, $tl, St2 ﬂb’\-~|
sw St3, -24(Sfp) 4 axotl \~wo w
Week 11 (M) Page 3

Simple memory-allocation scheme
Reserve a slot for each variable in the function
Algorithm (for each function)

set offset = +4 61_6)_‘“* o-‘.- \ﬂ Qm
for each parameter /
carr@t oot

add name to symbol table W
offset += size of parameter

offset = -4 4m ONCLOWW sgr cgwcro\ \\Nk
offset -= size of callee saved registers
for each local
offset -= size of Varlable
add name to symbol table \J cLufeont &gb-@“
Implementation (1~ 6

e add an offset field to each symbol table entry
e during name analysis, add the offset along with the name

o walk the AST performing decrements at each declaration node |°w a8t
Example -\
void test (int x, int y) { \D
;r;t(a, 1)3:{ -4 -52e of B loch
1 PP VoS ==
int s; A Qﬂ\ 2
} | -
else { Contom\ \‘“\\g

int t, u, v;

u==>,b+ y; q o5 *—1C)€;‘J;?
) n \\:1: iy L-f%m «~0O%

X

o\

zWx 920 dx=D

_ _ _ \'\\'\\\ AT
Accessing global variables at runtime
Place in static data area o QOO
in MIPS, handled with ial st directi . .
e in andled with a special storage directive o X2x¢ drechwe Q@J‘ “h

e variables referred to by name, not address
Note: space allocated directly at compile time (never needs to be deallocated)

\nsread o w\om\, Ahcovyh

Example

Vo
.data /4'\“\ A Vﬁ\ve- 4?‘59?, cetS\
~x: .word 10
.text
lw $t0, ((x) # load from x into $tO
sw $t0, # store from $t0 into x

Week 11 (M) Page 4

Accessing non-local variables at runtime

Two situations

o static scope
variable declared in one procedure and accessed in a nested one
C———

e dynamic scope
any variable x that is not declared locally resolves to instance of x in the AR closest

to the current AR

Example: static non-local scope - ew\, Q“M\b\\‘% Ry owa P\?\
function main() | = Vetieble stoted in AR of
’ PraRduel ®nat dac\aced
function subprog() { .
} a=a+ 1; “\aad” QW\C:\’\‘ON (NEZ Y XN ontet
Swnckion s h?\ o Cantind

Example: static non-local scope

void procA() {/])ewe\ A
int x, y;
void procB () { ” |e\,b\’L
} print x; %\ (a\wa\b\
void procC() { Il Vese\ 2 Y) - leva\ 2
int z; [“ \3
void procD() { Ifleve@
int x; B X \040\‘5
x =z + y; Ka® 21_4\-\“
procB() ;
x = 4; "\"q 'Z- o
procB () ; «
procD () ; ‘\ B \QJOJ\'l.
} -
X = 3; 7‘\"‘_‘) — L
y = 5; *1\'.{
procC () ;
}
Page 5

Week 11 (M)

Access links ‘
Add additional field in the AR (called access link, or static link) 5N e
powts +o locls asein (or) of enclosing gocedure AR S22 \in¢_

How access links work
e we know how many levels to traverse statically o
\e

CaCroNt S ppe S ot Ms"\‘MS\W b

& N PN T U5 VS ax nestna Jeve\ L

c el D1 eudhs \ovds e

Setting up access links AR
void procA () {//,evd 4.

int x, y;
void procB() { ’I\Ou@\l

print x;

}
void procC() { || L&IG\ 1
int z; B

void procD() {” wwaz) —
int x;
X =2z + v; B.-\
procB() ;

Handling use of non-local variable x (at compile time)
e each variable keeps track of nesting level in which it is declared

e when x is used in procedure P
o follow predetermlned # of links to get to AR for proc$jure in which x is declared

Ly=\oe\ & K& de\ L o=\eve\ &
f’ \lnks 9 QO\\O\J \> LQ ~L

MIPS (assume $fp is location of access link
lw $t0, 0(Sfp)) #\ \\'\Vs \\owd
1w $t0, ($t0) H# 2 \ings S\evdd

1w $t0, -12(5t0) # e Xo et W DA & Au\o«‘u\b Qeoce&,ee

Week 11 (M) Page 6

Using a display

Idea: avoid run-time overhead of following access links by having a global array (called the
display) containing links to the procedures that lexically enclose the current procedure

How it works
e given procedure P at nesting level k is currently executing
e display[0], display[l], ..., display[k-2] hold pointers to ARs of the most
recent activations of the k-1 procedures that enclose P
e display[k-1] holds pointerto P 's AR
e to access non-local variable x declared in nesting level n
e usedisplay[n-1] togetto AR that holds x
e then use regular offset (within AR) to get to x

How to maintain the display in the code
e add new "save-display" field to AR
e when procedure P at nesting level k is called
e save current value of display[k-1] in save-display field of P 's AR

e setdisplay[k-1] to pointto save-display field of P 's AR
e when procedure P is ready to return

e restore display[k-1] using value in save-display field 3‘56‘“‘1
Example | 2 2
void procA() { .

int x, vy;

void procB () { b 7 |
print x; . Mw
} C : 0
void procC () { —
int z; A ‘) /
void procD () { L . \
int x;) A‘”H
X =z t y; 4 '_‘ 2
procB () ; % —
) A ~ |,
x = 4; D !
z = 2; 9 ol 0
procB() ; C’ *
procD () ; ﬁ 9
} L]
X = 3; L\—’J
y = 5;
procC();
}
Page 7

Week 11 (M)

Dynamic non-local scope

Example

function main () {
int a = 0;
funl () ;
fun2 () ;

t

function fun2 () {
int a = 27;
funl () ;

}

function funl () {
a=a + 1;

}

Key point — we don't know which non-local variable we are refering to

Two ways to set up dynamic access
e deep access — somewhat similar to access links
e shallow access — somewhat similar to displays

Deep access

e if the variable isn't local
e follow control link to caller's AR
e check to see if it defines the variable
¢ if not, follow the next control link down the stack

e note that we need to know if a variable is defined with that name in an AR
¢ usually means we'll have to associate a name with a stack slot

Shallow access
e Kkeep a table with an entry for each variable declaration
e compile a direct reference to that entry

e at function call on entry to function F
e F saves (in its AR) the current values of all variables that F declares itself

e F restores these values when it finishes

Week 11 (M) Page 8

	CS 536 Announcements for Monday, April 8, 2024
	Code generation and parameter passing
	Compare and contrast
	Accessing variables at runtime
	Accessing local variables at runtime
	Simple memory-allocation scheme
	Accessing global variables at runtime
	Accessing non-local variables at runtime
	Example: static non-local scope
	Access links
	Using a display
	Dynamic non-local scope

