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CS 536 Announcements for Monday, April 8, 2024 
Last Time 
• parameter passing 
• terminology 
• different styles 

• what they mean 
• how they look on the stack 

Today 
• wrap up parameter passing 

• compare and contrast 
• accessing variables at runtime 

• how do we deal with variables and scope? 
• how do we organize activation records? 
• how do we retrieve values of variables from activation records? 

Next Time 
• code generation 

 
 
 
 
 

Code generation and parameter passing 
Efficiency considerations (calls, accesses by callee, return) 
Pass by value 
• copy values into callee's AR 
• callee directly accesses AR locations 
Pass by reference 
• copy addresses into callee's AR 
• access in callee via indirection 
Pass by value-result 
• strictly slower than pass by value 
• need to know where to copy values back on return 

Handling objects 
In Java, variables hold the addresses of objects 
• no overhead of copying entire objects 

In C++, variables are objects in the stack 
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Compare and contrast 
Pass by value 
• no aliasing 

• easier for static analysis 

• called function (callee) is faster 
 
Pass by reference 
• more efficient when passing large objects 

• can modify actuals 

 

 

 
Pass by value-result 
• more efficient than pass by refence for small objects 

• if no aliasing, can be implemented as pass by reference for large objects 
 
 
but determining if there is aliasing (and what is aliased) is a challenging task (in general) 

 
 
 

Accessing variables at runtime 
local variables 
• declared and used in the same function 
• further divided into "block" scope in base 

global variables 
• declared at the outermost level of the program 

• in C/C++/base 

• in Java 
 
non-local variables (i.e., from nested scopes) 
• for static scope: variables declared in an outer scope 
• for dynamic scope: variables declared in the calling context 
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Accessing local variables at runtime 
Local variables 
• includes parameters and all local variables in a function 
• stored in activation record of function in which they are declared 
• accessed using offset from frame pointer  

 

Accessing the stack 
• general anatomy of MIPS instruction 
 

• use "load" and "store" instructions  
• every memory cell has an address 
• calculate that memory address, then move data from/to that address 

 

void test(int x, int y) { 
    int a, b; 
    ... 
    if (...) { 
        int s; 
        ... 
    } 
    else { 
        int t, u, v; 
        ... 
        u = b + y; 
    } 
} 

Activation record for test 

  

  

  

  

  

  

  

  

  

  
 

MIPS code for  u = b + y 

lw  $t1, -12($fp) 

 

 

lw  $t2, 8($fp) 

add $t3, $t1, $t2 

sw  $t3, -24($fp) 
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Simple memory-allocation scheme 
Reserve a slot for each variable in the function 
Algorithm (for each function) 

set offset = +4 

for each parameter 
 add name to symbol table 
 offset += size of parameter 

offset = -4 

offset -= size of callee saved registers 

for each local 
 offset -= size of variable 
 add name to symbol table 

Implementation 
• add an offset field to each symbol table entry 
• during name analysis, add the offset along with the name 
• walk the AST performing decrements at each declaration node 

Example 
void test(int x, int y) { 
    int a, b; 
    if (...) { 
        int s; 
    } 
    else { 
        int t, u, v; 
        u = b + y; 
    } 
} 

 
 
 

Accessing global variables at runtime  
Place in static data area 
• in MIPS, handled with a special storage directive 
• variables referred to by name, not address 

Note: space allocated directly at compile time (never needs to be deallocated) 
Example 

.data 
_x: .word 10 
 

.text 
lw $t0, _x  # load from x into $t0 
sw $t0, _x  # store from $t0 into x 
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Accessing non-local variables at runtime 
Two situations 
• static scope 

• variable declared in one procedure and accessed in a nested one 
• dynamic scope 

• any variable x that is not declared locally resolves to instance of x in the AR closest 
to the current AR 

Example: static non-local scope 
 
function main() { 
 int a = 0; 
 
 function subprog() { 
  a = a + 1; 
 } 
} 

 
 
 

Example: static non-local scope 
void procA() { 
 int x, y; 
 void procB() { 
  print x; 
 } 
 void procC() { 
  int z; 
  void procD() { 
   int x; 
   x = z + y;  
   procB();   
  } 
 
  x = 4; 
  z = 2; 
  procB(); 
  procD(); 
 } 
 x = 3; 
 y = 5; 
 procC(); 
} 
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Access links 
Add additional field in the AR (called access link, or static link) 
 
How access links work 
• we know how many levels to traverse statically 

 
 
 
Setting up access links 

void procA() { 
 int x, y; 
 void procB() { 
  print x; 
 } 
 void procC() { 
  int z; 
  void procD() { 
   int x; 
   x = z + y;  
   procB();   
  } 
 
  x = 4; 
  z = 2; 
  procB(); 
  procD(); 
 } 
 x = 3; 
 y = 5; 
 procC(); 
} 

Handling use of non-local variable x (at compile time) 
• each variable keeps track of nesting level in which it is declared 
• when x is used in procedure P 

• follow predetermined # of links to get to AR for procedure in which x is declared 
 
 
MIPS (assume $fp is location of access link) 

lw $t0, 0($fp) 
lw $t0,  ($t0) 
    . . . 
lw $t0, -12($t0) 
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Using a display 
Idea: avoid run-time overhead of following access links by having a global array (called the 

display) containing links to the procedures that lexically enclose the current procedure 

How it works 
• given procedure P at nesting level k is currently executing 
• display[0], display[1], ..., display[k-2] hold pointers to ARs of the most 

recent activations of the k-1 procedures that enclose P 
• display[k-1] holds pointer to P 's AR 
• to access non-local variable x declared in nesting level n  

• use display[n-1] to get to AR that holds x 
• then use regular offset (within AR) to get to x 

How to maintain the display in the code 
• add new "save-display" field to AR 
• when procedure P at nesting level k is called 

• save current value of display[k-1] in save-display field of P 's AR 
• set display[k-1] to point to save-display field of P 's AR 

• when procedure P is ready to return 
• restore display[k-1] using value in save-display field 

Example 
void procA() { 
 int x, y; 
 void procB() { 
  print x; 
 } 
 void procC() { 
  int z; 
  void procD() { 
   int x; 
   x = z + y;  
   procB();   
  } 
 
  x = 4; 
  z = 2; 
  procB(); 
  procD(); 
 } 
 x = 3; 
 y = 5; 
 procC(); 
} 
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Dynamic non-local scope 
Example 

function main() { 
 int a = 0; 
 fun1(); 
 fun2(); 
} 
function fun2() { 
 int a = 27; 
 fun1(); 
} 
function fun1() { 
 a = a + 1; 
} 

Key point – we don't know which non-local variable we are refering to 

Two ways to set up dynamic access 
• deep access – somewhat similar to access links 
• shallow access – somewhat similar to displays 

 

Deep access 
• if the variable isn't local 

• follow control link to caller's AR 
• check to see if it defines the variable 
• if not, follow the next control link down the stack 

• note that we need to know if a variable is defined with that name in an AR 
• usually means we'll have to associate a name with a stack slot 

 

Shallow access 
• keep a table with an entry for each variable declaration 

• compile a direct reference to that entry 

• at function call on entry to function F 
• F saves (in its AR) the current values of all variables that F declares itself 
• F restores these values when it finishes 
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