
Week 11 (M) Page 1

CS 536 Announcements for Monday, April 8, 2024
Last Time
• parameter passing
• terminology
• different styles

• what they mean
• how they look on the stack

Today
• wrap up parameter passing

• compare and contrast
• accessing variables at runtime

• how do we deal with variables and scope?
• how do we organize activation records?
• how do we retrieve values of variables from activation records?

Next Time
• code generation

Code generation and parameter passing
Efficiency considerations (calls, accesses by callee, return)
Pass by value
• copy values into callee's AR
• callee directly accesses AR locations
Pass by reference
• copy addresses into callee's AR
• access in callee via indirection
Pass by value-result
• strictly slower than pass by value
• need to know where to copy values back on return

Handling objects
In Java, variables hold the addresses of objects
• no overhead of copying entire objects

In C++, variables are objects in the stack

Week 11 (M) Page 2

Compare and contrast
Pass by value
• no aliasing

• easier for static analysis

• called function (callee) is faster

Pass by reference
• more efficient when passing large objects

• can modify actuals

Pass by value-result
• more efficient than pass by refence for small objects

• if no aliasing, can be implemented as pass by reference for large objects

but determining if there is aliasing (and what is aliased) is a challenging task (in general)

Accessing variables at runtime
local variables
• declared and used in the same function
• further divided into "block" scope in base

global variables
• declared at the outermost level of the program

• in C/C++/base

• in Java

non-local variables (i.e., from nested scopes)
• for static scope: variables declared in an outer scope
• for dynamic scope: variables declared in the calling context

Week 11 (M) Page 3

Accessing local variables at runtime
Local variables
• includes parameters and all local variables in a function
• stored in activation record of function in which they are declared
• accessed using offset from frame pointer

Accessing the stack
• general anatomy of MIPS instruction

• use "load" and "store" instructions
• every memory cell has an address
• calculate that memory address, then move data from/to that address

void test(int x, int y) {
 int a, b;
 ...
 if (...) {
 int s;
 ...
 }
 else {
 int t, u, v;
 ...
 u = b + y;
 }
}

Activation record for test

MIPS code for u = b + y

lw $t1, -12($fp)

lw $t2, 8($fp)

add $t3, $t1, $t2

sw $t3, -24($fp)

Week 11 (M) Page 4

Simple memory-allocation scheme
Reserve a slot for each variable in the function
Algorithm (for each function)

set offset = +4

for each parameter
 add name to symbol table
 offset += size of parameter

offset = -4

offset -= size of callee saved registers

for each local
 offset -= size of variable
 add name to symbol table

Implementation
• add an offset field to each symbol table entry
• during name analysis, add the offset along with the name
• walk the AST performing decrements at each declaration node

Example
void test(int x, int y) {
 int a, b;
 if (...) {
 int s;
 }
 else {
 int t, u, v;
 u = b + y;
 }
}

Accessing global variables at runtime
Place in static data area
• in MIPS, handled with a special storage directive
• variables referred to by name, not address

Note: space allocated directly at compile time (never needs to be deallocated)
Example

.data
_x: .word 10

.text
lw $t0, _x # load from x into $t0
sw $t0, _x # store from $t0 into x

Week 11 (M) Page 5

Accessing non-local variables at runtime
Two situations
• static scope

• variable declared in one procedure and accessed in a nested one
• dynamic scope

• any variable x that is not declared locally resolves to instance of x in the AR closest
to the current AR

Example: static non-local scope

function main() {
 int a = 0;

 function subprog() {
 a = a + 1;
 }
}

Example: static non-local scope
void procA() {
 int x, y;
 void procB() {
 print x;
 }
 void procC() {
 int z;
 void procD() {
 int x;
 x = z + y;
 procB();
 }

 x = 4;
 z = 2;
 procB();
 procD();
 }
 x = 3;
 y = 5;
 procC();
}

Week 11 (M) Page 6

Access links
Add additional field in the AR (called access link, or static link)

How access links work
• we know how many levels to traverse statically

Setting up access links

void procA() {
 int x, y;
 void procB() {
 print x;
 }
 void procC() {
 int z;
 void procD() {
 int x;
 x = z + y;
 procB();
 }

 x = 4;
 z = 2;
 procB();
 procD();
 }
 x = 3;
 y = 5;
 procC();
}

Handling use of non-local variable x (at compile time)
• each variable keeps track of nesting level in which it is declared
• when x is used in procedure P

• follow predetermined # of links to get to AR for procedure in which x is declared

MIPS (assume $fp is location of access link)

lw $t0, 0($fp)
lw $t0, ($t0)
 . . .
lw $t0, -12($t0)

Week 11 (M) Page 7

Using a display
Idea: avoid run-time overhead of following access links by having a global array (called the

display) containing links to the procedures that lexically enclose the current procedure

How it works
• given procedure P at nesting level k is currently executing
• display[0], display[1], ..., display[k-2] hold pointers to ARs of the most

recent activations of the k-1 procedures that enclose P
• display[k-1] holds pointer to P 's AR
• to access non-local variable x declared in nesting level n

• use display[n-1] to get to AR that holds x
• then use regular offset (within AR) to get to x

How to maintain the display in the code
• add new "save-display" field to AR
• when procedure P at nesting level k is called

• save current value of display[k-1] in save-display field of P 's AR
• set display[k-1] to point to save-display field of P 's AR

• when procedure P is ready to return
• restore display[k-1] using value in save-display field

Example
void procA() {
 int x, y;
 void procB() {
 print x;
 }
 void procC() {
 int z;
 void procD() {
 int x;
 x = z + y;
 procB();
 }

 x = 4;
 z = 2;
 procB();
 procD();
 }
 x = 3;
 y = 5;
 procC();
}

Week 11 (M) Page 8

Dynamic non-local scope
Example

function main() {
 int a = 0;
 fun1();
 fun2();
}
function fun2() {
 int a = 27;
 fun1();
}
function fun1() {
 a = a + 1;
}

Key point – we don't know which non-local variable we are refering to

Two ways to set up dynamic access
• deep access – somewhat similar to access links
• shallow access – somewhat similar to displays

Deep access
• if the variable isn't local

• follow control link to caller's AR
• check to see if it defines the variable
• if not, follow the next control link down the stack

• note that we need to know if a variable is defined with that name in an AR
• usually means we'll have to associate a name with a stack slot

Shallow access
• keep a table with an entry for each variable declaration

• compile a direct reference to that entry

• at function call on entry to function F
• F saves (in its AR) the current values of all variables that F declares itself
• F restores these values when it finishes

	CS 536 Announcements for Monday, April 8, 2024
	Code generation and parameter passing
	Compare and contrast
	Accessing variables at runtime
	Accessing local variables at runtime
	Simple memory-allocation scheme
	Accessing global variables at runtime
	Accessing non-local variables at runtime
	Example: static non-local scope
	Access links
	Using a display
	Dynamic non-local scope

