
Week 11 (W) Page 1

CS 536 Announcements for Wednesday, April 10, 2024
Last Time
• variable access at runtime

• local vs global variables
• static vs dynamic scopes

Today
• wrap up variable access at runtime
• start looking at details of MIPS
• code generation

Next Time
• continue code generation

Dynamic non-local scope
Example

function main() {
 int a = 0;
 fun1();
 fun2();
}
function fun2() {
 int a = 27;
 fun1();
}
function fun1() { a = a + 1; }

Key point – we don't know which non-local variable we are refering to
Two ways to set up dynamic access
• deep access – somewhat similar to access links
• shallow access – somewhat similar to displays

Deep access
• if the variable isn't local

• follow control link to caller's AR
• check to see if it defines the variable
• if not, follow the next control link down the stack

• note that we need to know if a variable is defined with that name in an AR
• usually means we'll have to associate a name with a stack slot

Shallow access
• keep a table with an entry for each variable declaration
• compile a direct reference to that entry
• at function call on entry to function F

• F saves (in its AR) the current values of all variables that F declares itself
• F restores these values when it finishes

Week 11 (W) Page 2

Compiler Big Picture

Scanner

Parser

Static-Semantic
Analysis

IR Codegen

Optimizer

MC Codegen

Week 11 (W) Page 3

Compiler Back End: Design Decisions
When do we generate?
• directly from AST
• during SDT

How many passes?
• fewer passes

•

•

•

• more passes

•

•

What do we generate?
• machine code

•

•

• intermediate representation (IR)

•

•

•

Possible IRs
• CFG (control-flow graph)
• 3AC (three-address code)

• instruction set for a fictional machine
• every operator has at most 3 operands
• provides illusion of infinitely many registers
• "flatten out" expressions

Week 11 (W) Page 4

3AC Example
3AC instruction set
Assignment
• x = y op z
• x = op y
• x = y

Indirection
• x = y[z]
• y[z] = x
• x = &y
• x = *y
• *y = x

Call/Return
• param x,k
• retval x
• call p
• enter p
• leave p
• return
• retrieve x

Type Conversion
• x = AtoB y

Jumps
• if (x op y) goto L

Labeling
• label L

Basic Math
• times, plus, etc.

Example
source code

if x + y * z > x * y + z [
 a = 0.
]
b = 2.

3AC code

tmp1 = y * z
tmp2 = x + tmp1
tmp3 = x * y
tmp4 = tmp3 + z
if (tmp2 <= tmp4) goto L
 a = 0
L: b = 2

3AC representation
• each instruction represented using a structure called a “quad”

• space for the operator
• space for each operand
• pointer to auxilary info (label, succesor quad, etc.)

• chain of quads sent to an architecture-specific machine-code-generation phase

Code Generation
For base
• skip building a separate IR
• generate code by traversing the AST

• add codeGen methods to AST nodes
• directly emit corresponding code into file

Two high-level goals
• generate correct code
• generate efficient code

Week 11 (W) Page 5

Code Generation (cont.)
Simplified strategy
Make sure we don't have to worry about running out of registers
• for each operation, put all arguments on the stack

• make use of the stack for computation
• only use two registers for computation

Different AST nodes have different responsibilities
Many nodes simply "direct traffic"

• ProgramNode.codeGen

• List-node types

• DeclNode

• TupleDeclNode

• FctnDeclNode

• VarDeclNode

Code Generation for Global Variable Declarations
Source code:

integer name.
tuple MyTuple instance.

In AST: VarDeclNode
Generate:

 .data
 .align 2 # align on word boundaries
_name: .space N # N is the size of variable

Size of variable
• for scalars, well-defined: integer, boolean are 4 bytes
• for tuples: 4*size of tuples

Week 11 (W) Page 6

Code Generation for Function Declarations
Need to generate

• preamble

• prologue

• body

• epilogue

MIPS Crash Course
Registers

Week 11 (W) Page 7

MIPS Crash Course (cont.)
Program structure
Data
• label: .data
• variable names & size; heap storage

Code
• label: .text
• program instructions
• starting location: main

Data
 name: type value(s)
e.g.,
 v1: .word 10
 a1: .byte 'a' , 'b'
 a2: .space 40
 40 here is allocated space – no value is initialized

Memory instructions
lw register_destination, RAM_source

• copy word (4 bytes) at source RAM location to destination register.

lb register_destination, RAM_source
• copy byte at source RAM location to low-order byte of destination register

li register_destination, value
• load immediate value into destination register

sw register_source, RAM_dest
• store word in source register into RAM destination

sb register_source, RAM_dest
• store byte in source register into RAM destination

Week 11 (W) Page 8

MIPS Crash Course (cont.)
Arithmetic instructions

Control instructions

Check out: MIPS tutorial
https://minnie.tuhs.org/CompArch/Resources/mips_quick_tutorial.html

https://minnie.tuhs.org/CompArch/Resources/mips_quick_tutorial.html

	CS 536 Announcements for Wednesday, April 10, 2024
	Dynamic non-local scope
	Compiler Big Picture
	Compiler Back End: Design Decisions
	3AC Example
	Code Generation
	Code Generation (cont.)
	Code Generation for Global Variable Declarations
	Code Generation for Function Declarations
	MIPS Crash Course
	MIPS Crash Course (cont.)
	MIPS Crash Course (cont.)

