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CS 536 Announcements for Wednesday, April 10, 2024 
Last Time 
• variable access at runtime 

• local vs global variables 
• static vs dynamic scopes 

Today 
• wrap up variable access at runtime 
• start looking at details of MIPS 
• code generation 

Next Time 
• continue code generation 

 

Dynamic non-local scope 
Example 

function main() { 
 int a = 0; 
 fun1(); 
 fun2(); 
} 
function fun2() { 
 int a = 27; 
 fun1(); 
} 
function fun1() { a = a + 1; } 

Key point – we don't know which non-local variable we are refering to 
Two ways to set up dynamic access 
• deep access – somewhat similar to access links 
• shallow access – somewhat similar to displays 

Deep access 
• if the variable isn't local 

• follow control link to caller's AR 
• check to see if it defines the variable 
• if not, follow the next control link down the stack 

• note that we need to know if a variable is defined with that name in an AR 
• usually means we'll have to associate a name with a stack slot 

Shallow access 
• keep a table with an entry for each variable declaration 
• compile a direct reference to that entry 
• at function call on entry to function F 

• F saves (in its AR) the current values of all variables that F declares itself 
• F restores these values when it finishes 
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Compiler Big Picture 
  

Scanner 

Parser 

Static-Semantic 
Analysis 

IR Codegen 

Optimizer 

MC Codegen 
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Compiler Back End: Design Decisions 
When do we generate? 
• directly from AST 
• during SDT 
 
 
 

How many passes? 
• fewer passes 

•   

•   

•   

• more passes 

•   

•   

What do we generate? 
• machine code 

•   

•   

• intermediate representation (IR) 

•   

•   

•   

Possible IRs 
• CFG (control-flow graph) 
• 3AC (three-address code) 

• instruction set for a fictional machine 
• every operator has at most 3 operands 
• provides illusion of infinitely many registers 
• "flatten out" expressions 
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3AC Example 
3AC instruction set 
Assignment 
• x = y op z 
• x = op y 
• x = y 

Indirection 
• x = y[z] 
• y[z] = x 
• x = &y 
• x = *y 
• *y = x 

Call/Return 
• param x,k 
• retval x 
• call p 
• enter p 
• leave p 
• return  
• retrieve x 

Type Conversion 
• x = AtoB y 

Jumps 
• if ( x op y) goto L 

Labeling 
• label L 

Basic Math 
• times, plus, etc. 

 
Example 
source code 

 
if  x + y * z > x * y + z [ 
    a = 0. 
] 
b = 2. 
 

3AC code 

tmp1 = y * z 
tmp2 = x + tmp1 
tmp3 = x * y 
tmp4 = tmp3 + z 
if (tmp2 <= tmp4) goto L 
    a = 0 
L: b = 2 

3AC representation 
• each instruction represented using a structure called a “quad” 

• space for the operator 
• space for each operand 
• pointer to auxilary info (label, succesor quad, etc.) 

• chain of quads sent to an architecture-specific machine-code-generation phase 
 

Code Generation 
For base 
• skip building a separate IR 
• generate code by traversing the AST 

• add codeGen methods to AST nodes 
• directly emit corresponding code into file 

Two high-level goals 
• generate correct code 
• generate efficient code 
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Code Generation (cont.) 
Simplified strategy 
Make sure we don't have to worry about running out of registers 
• for each operation, put all arguments on the stack 
 
• make use of the stack for computation 
• only use two registers for computation 

Different AST nodes have different responsibilities 
Many nodes simply "direct traffic" 

• ProgramNode.codeGen 

• List-node types 

• DeclNode 

• TupleDeclNode 

• FctnDeclNode 

• VarDeclNode 
 
 
 
 
 
 

Code Generation for Global Variable Declarations 
Source code: 

integer name. 
tuple MyTuple instance. 

In AST: VarDeclNode 
Generate: 

       .data 
       .align 2   # align on word boundaries 
_name: .space N   # N is the size of variable 

Size of  variable 
• for scalars, well-defined: integer, boolean are 4 bytes 
• for tuples: 4*size of tuples 
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Code Generation for Function Declarations 
Need to generate 

• preamble 

• prologue 

• body 

• epilogue 
 
 
 
 
 
 
 
 
 
 
 

MIPS Crash Course 
Registers 

 
  



Week 11 (W)  Page 7 

MIPS Crash Course (cont.) 
Program structure 
Data 
• label:  .data 
• variable names & size; heap storage 

Code 
• label:  .text 
• program instructions 
• starting location: main 

 
 
 
 
 
 
 
Data 
 name: type value(s) 
e.g., 
 v1: .word 10 
 a1: .byte 'a' , 'b' 
 a2: .space 40 
  40 here is allocated space – no value is initialized 

Memory instructions 
lw register_destination, RAM_source 

• copy word (4 bytes) at source RAM location to destination register. 

lb register_destination, RAM_source 
• copy byte at source RAM location to low-order byte of destination register 

li register_destination, value 
• load immediate value into destination register 

sw register_source, RAM_dest 
• store word in source register into RAM destination 

sb register_source, RAM_dest 
• store byte in source register into RAM destination 
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MIPS Crash Course (cont.) 
Arithmetic instructions 

 

Control instructions 

 

 

 

 

Check out: MIPS tutorial 
https://minnie.tuhs.org/CompArch/Resources/mips_quick_tutorial.html 

https://minnie.tuhs.org/CompArch/Resources/mips_quick_tutorial.html
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