CS 536 Announcements for Wednesday, April 17, 2024

Last Time
e continue code generation
function declaration, call, and return
expressions
literals
assignment
I/O0

Today
e wrap up code generation
e tuple access
e control-flow constructs
e introduce control flow graphs

Next Time
e optimization

P6 : Codegen class

Constants for registers and logical constants
eg., FP , SP , TO , T1

Methods to help automatically generate code

generate (opcode, ... args ...)
e.g., generate ("add", "sto", "sto", "stl")
writes out add $t0, $t0, S$tl
versions for fewer args as well

generatelndexed (opcode,argl, arg?2, offset)
e.g., generatelIndexed ("1w", "S$t0", S$tl1", -12)
writesout 1w $t0, -12($tl)

genPush (reg) / genPop (req)

nextLabel () - returns a unique string to use as a label

genLabel (L) — places a label

Week 12 (W)

Page 1

Code Generation for Tuple Access

Offset from base of tuple to certain field is known statically
e compiler can do the math for the slot address
e not true for languages with pointers!

Example

tuple Inner {
logical hi.
integer there.
integer c.

}.

tuple Demo {
tuple Inner b.
integer val.

}.

void f{} [

tuple Demo inst.

. = inst:b:c.

inst:b:c = ...

Week 12 (W)

Page 2

Control flow graphs
Kinds of control flow
e function calls
e selection
e repetition

e short-circuited operators

Control flow graph (CFG)
e important representation for program optimization
e helpful way to visualize source code

Example
Linel: 1i $t0, 4
Line2: 11i S$t1, 3
Line3: add $t0, $t0, S$tl
Line4: sw $t0, wval
Lineb5: b Line?2
Line6: sw $t0, 0(Ssp)
Line7: subu $sp, Ssp, 4

Week 12 (W)

Page 3

Kinds of control flow in base
if exp | if exp [while exp [

]] el“s.e []

What is needed at the assembly-code level

e branching

e unconditional b label
e conditional beq rl, src, label
e labels

Week 12 (W) Page 4

Code generation for i f statements

base code example:

if a == [
$ body of if
]

Code generation steps:
e get a label for end of construct
e generate code for expression
e generate conditional branch
e generate body of i f

e place end-of-construct label

Code generation for i f-else statements

base code example:
if a > b [
$ body of if
]

else |
$ body of else
]

Week 12 (W) Page 5

Code generation for i f-else statements (cont.)
base code:

if a > Db |
$ body of if
]

else |
$ body of else

]

MIPS code outline:

lw $t0, addr a
push S$t0

lw $t0, addr b
push S$t0

pop Stl

pop St0

sgt $t0, $t0, $tl
push $t0

pop StO0
beq $t0, FALSE, falselabel

b doneIflabel

falselabel:

doneIflabel:

Week 12 (W)

Page 6

Code generation for i f-else statements (cont.)
Revisiting the CFG

lw $t0, addr a
push S$t0

lw $t0, addr b
push S$t0

pop Stl

pop $tO

sgt $t0, S$t0, Stil
push $t0

pop St0
beq $t0, FALSE, falselLabel

code for true branch
b doneIflLabel

falselabel:

code for false branch

doneIflabel:

Code generation for while statements

base code example:

while a == [
$ body of while

Week 12 (W) Page 7

MIPS tips

It's really easy to get confused with assembly

Some suggestions

e start simple: main procedure that prints the value 1
e get procedure main to compile and run
e function prologue and epilogue

e trivial case of expressions: evaluating the constant 1,
which pushes a 1 on the stack

e printing: write << 1.
e then grow your compiler incrementally
e expressions
e control constructs
e call/return

Create super simple test cases
e main procedure: print the value of some expression
e create more and more complicated expressions

Regression suite
e rerun all test cases to check whether you introduced a bug

e more suggestions
e try writing desired assembly code by hand before having the compiler generate it

e draw pictures of program flow
e have your compiler put in detailed comments in the assembly code it emits

Week 12 (W) Page 8

	CS 536 Announcements for Wednesday, April 17, 2024
	P6 : Codegen class
	Code Generation for Tuple Access
	Control flow graphs
	Kinds of control flow in base
	Code generation for if statements
	Code generation for if-else statements
	Code generation for if-else statements (cont.)
	Code generation for if-else statements (cont.)
	Code generation for while statements
	MIPS tips

