CS 536 Announcements for Monday, April 22, 2024

Last Time
e wrap up code generation
e tuple access
e control-flow constructs and code generation
e introduce control flow graphs

Today
e optimization overview
e peephole optimization
e |oop optimizations

Next Time
e Ccopy propagation

Recall example from last time
MIPS code outline:

lw $t0, addr a
push $tO0

lw $t0, addr b
push S$t0

pop Stl

pop St0

sgt $t0, $t0, $tl
push $tO0

pop St0
beq $t0, FALSE, falselLabel

code for true branch
b doneIflabel
falselabel:

code for false branch

doneIflabel:

Week 13 (M)

Page 1

Optimization Overview
Goals
Informally: Produce "better" code that does the "same thing" as the original code.
What are we trying to accomplish?
o faster
o fewer
e lower

e smaller

Safety quarantee

Informally: Don't change the program's output (observable behavior)
e the same input produces the same output
e if the original program produces an error on a given input, so will the transformed code

e if the original program does not produce an error on a given input, neither will the
transformed code

However... There's no perfect way to check equivalence of two arbitrary programs
e if there was, we could use it to solve the halting problem
o we'll attempt to perform behavior-preserving transformations

Week 13 (M) Page 2

Program Analysis

A perspective on optimization
e recognize some behavior in a program
e replace it with a "better" version

However, halting problem keeps arising:
e we can only use approximate algorithms to recognize behavior

Two properties of program-analysis/behavior detection algorithms
e soundness : all results that are output are valid
e completeness : all results that are valid are output

Analysis algorithms with these properties are mutually exclusive:
e if an algorithm was sound and complete, it would either:

e solve the halting problem, or
e detect a trivial property

Optimization Overview (cont.)

We want our optimizations to be sound transformations

e they are always valid

e but some opportunities for applying a transformation will be missed
Our techniques

e can detect many practical instances of the behavior

e won't cause any harm

e but we still want to consider efficiency

Peephole optimization
e naive code generator errs on the side of correctness over efficiency
e use pattern-matching to find the most obvious places where code can be improved
e look at only a few instructions at a time

Week 13 (M) Page 3

Peephole optimization
What can be optimized Replaced with

push followed by pop

pop followed by push

branch to next instruction

jump to a jump

jump around a jump

Week 13 (M) Page 4

What can be optimized

store followed by load

load followed by store

useless operations

multiplication by 2

Do multiple passes?

Week 13 (M)

Peephole optimization (cont.)

Replaced with

Page 5

Loop-Invariant Code Motion (LICM)

Idea: Don't duplicate effort in a loop
Goal: Pull code out of the loop ("loop hoisting")
Important because of "hot spots"

e most execution time due to small regions of deeply-nested loops

Example
for (i=0; 1i<100; i++) {
for (3=0; j<100; J++ {
for (k=0; k<100; k++) {
A[i][J][k] = i*3*k;
}

}

becomes
for (i=0; 1i<100; i++) {
for (3=0; j<100; J++ {
temp = i*7j;
for (k=0; k<100; k++) {

A[i]1[]J]1[k] = temp*k;

}

Suppose A is on the stack.

To compute the address of A[i] [J] [k]:
FP — offset of A[0][0][0]
+ (1i*10000%*4)
+ (3J*100%*4)
+ (k*4)

Week 13 (M)

Page 6

Loop-Invariant Code Motion (cont.)

When should we do LICM?
e at IR level, more candidate operations

e assemby might be foo low-level
¢ need guarantee that the loop is natural

How should we do LICM? Factors to consider
e safety — is the transformation semantics-preserving?

e profitability — is there any advantage to moving the instruction?

Other Loop Optimizations

Strength reduction in for-loops
e replace multiplications with additions

Loop unrolling

e for a loop with a small, constant number of iterations, may actually take less time to
execute by just placing every copy of the loop body in sequence

e may also consider doing multiple iterations within the body

Loop fusion
e merge 2 sequential, independent loops into a single loop body

Week 13 (M) Page 7

	CS 536 Announcements for Monday, April 22, 2024
	Recall example from last time
	Optimization Overview
	Goals
	Safety guarantee
	Program Analysis
	Optimization Overview (cont.)
	Peephole optimization
	Peephole optimization (cont.)
	Loop-Invariant Code Motion (LICM)
	Loop-Invariant Code Motion (cont.)
	Other Loop Optimizations

