CS 536 Announcements for Monday, April 22, 2024

Last Time
e wrap up code generation
e tuple access
e control-flow constructs and code generation
¢ introduce control flow graphs

Today
e optimization overview
e peephole optimization
e |oop optimizations

Next Time
e Ccopy propagation

Recall example from last time
MIPS code outline:

lw $t0, addr a
push $tO0

lw 3t0, addr b

push $t0)/_mo\'ﬂ' $‘L1) S0
pop Stl

pop $t0
w\‘“’"& sgt $t0, $t0, s$tl WALy \o‘m we

Yrad us
] e do 1t 5Re KWy, Lai) Errer
oL39% pop S$t0 ool OSQ;\QFM\‘&\

beq $t0, FALSE, falselLabel
code for true branch
5 doneIflLabel
falselabel:

code for false branch

doneIflabel:

Week 13 (M) Page 1

Optimization Overview

Goals
Informally: Produce "better" code that does the "same thing" as the original code.
What are we trying to accomplish?
o faster 00&2.
o fewer \nSXCucx\ong
e lower Qowd”
o smaller Koot Qv‘\o\-\
bws cesi\ence ?

Safety quarantee

Informally: Don't change the program's output (observable behavior)
e the same input produces the same output

e if the original program produces an error on a given input, so will the transformed code
——— N

e if the original program does @1 produce an error on a given input, neither will the
transformed code -
—_—

Does 0cd V\E,Q,A 9 \se (J(‘CSQ,\‘Vzd‘),
"'\J\nem ow‘\xn‘\ S 050\6'6*-(’.&
- A\f&eew ocd T ok 0pS \o Q\ow\"\po)- eb‘\ﬁ“ “\r'\ﬂ\w\\c*\‘u ™any
etob uuu\ &&;QNM COSW<S O () "
F\siét . e\ra\\\m*‘mx ?o\\\“of\{a\.g‘. Ay?-? ’\5 ;(b.\, ng,\— s O(I\’\N‘*s
Con B2 eualnatel ey = Eego‘- Qo\\'

(((Ax+v)x MJ«-FDﬁ X 8‘(:: ﬁ};«.

However... There's no perfect way to check equivalence of two arbitrary programs
e if there was, we could use it to solve the halting problem
o we'll attempt to perform behavior-preserving transformations

Week 13 (M) Page 2

Program Analysis

A perspective on optimization
e recognize some behavior in a program
e replace it with a "better" version

However, halting problem keeps arising:
e we can only use approximate algorithms to recognize behavior

Two properties of program-analysis/behavior detection algorithms
e soundness : all results that are output are valid
e completeness : all results that are valid are output

Analysis algorithms with these properties are mutually exclusive:
e if an algorithm was sound and complete, it would either:

e solve the halting problem, or
e detect a trivial property

Optimization Overview (cont.)

We want our optimizations to be sound transformations

e they are always valid

e but some opportunities for applying a transformation will be missed
Our techniques

e can detect many practical instances of the behavior

e won't cause any harm

e but we still want to consider efficiency

Peephole optimization
e naive code generator errs on the side of correctness over efficiency
e use pattern-matching to find the most obvious places where code can be improved
e look at only a few instructions at a time

—~ done akter L0l 'S gehera«fe&

Week 13 (M) Page 3

Peephole optimization

What can be optimized Replaced with
push followed by pop ‘”k %t() a r
HMIPS vnsaes (’°€ 540 7 f‘eg “‘“"5
Noa: cads oo .
ogtimizotion e Pwsh 1D > A“q' ove $-L1) $t0
Vvt o \oko\ et Sl /0t

ALSoCiGA) \JEh 0of .
\ood vt rom top

pop followed by push Qo %10 5L o chade O ‘.w‘\\'
'S aut o
gw anatd] o \~ts S0
branch to next instruction b \o.\oe/\
\&\’el\ . \O-\Od\c
X jump to a jump Ll b L2
eX1C Cond w00 :
ace cequiceh Li: w2 1—1 ‘° L1
¥ jump around a jump be‘} 51;0,%{4, L4 ‘one Sto,ﬁl, L2
b L2 L1
L.

Week 13 (M) Page 4

Peephole optimization (cont.)
What can be optimized Replaced with

store followed by.l;):\;' Sw 510) ,\&Ar Sw ‘51‘;0 ,auwf
Sane \
cnenl :eg%ms) \\n’ $‘to‘ o.&.&r

load followed by store \v 69.','0' adde \v M,AMV
Same \‘(’Ags'\'e‘, Sw 5'&0, ad)E
Same addless
useless operations .
38 O add $10,%t0,0 v
a30 Dt0,5t4,0 ol 81,881

m“\—\"\p\\\\o‘ﬁ- — aame as S add -
L-? o TWRS! mudnghy e n oSy Lenove Koo \A & 2 insrrs

multiplication by 2 5\\&% - \@Q« (‘Qas’(&‘\

Some as30mbly lands hawl fnctlmtmt (ormmend — ol vt & ceple
(MRS daeen +) a3 o A

Do multiple passes?
od—SHEOT 5,0 (L0€ O
g~ 50 |2 g=sh

('\)(A 'H o‘c Qasse‘,j, 7
Oc can Qasss wn) a0 moact chanogs, 1o 6 bt

S o
L S \w 3&,”\@959\

Loop-Invariant Code Motion (LICM)
Idea: Don't duplicate effort in a loop
Goal: Pull code out of the loop (“loop hoisting")

Important because of "hot spots"
e most execution time due to small regions of deeply-nested loops

Example

for (1=0; i<100; 1i++) {
for (3j=0; 3<100; Jj++ {
for (k=0; k<100; k++) {
A[i1[31[k] = i*j*k;
—

| \

=) sub expresslon 1> oA

with ceopet k2
\angpest loop

[e—

}

becomes

for (i=0; 1<100; i++) {
for (3=0; j<100; J++ {

temp = 1*7;
for (k=0; k<100; k++) {
A[i]1[J][k] = temp*k;
}
}
}
Suppose A is on the stack. ¥me0 > FP- oq:se‘(..s“—‘\ Loliod LOK
To compute the addressof A[1i] [7] [k]: %‘("O‘
FP - offset of A[0][0][0] 2V -

+ (1i*10000%*4)
(3*100%4)

+ (k*4)

5 Yeed =z xne0x (x40000,
%v (‘)703 .. .i*" ‘o
—) 4 plZ e~
? ::MQ:C :\)5 3
foe (k=0 ..,
TO= *empr¥,
TL 2 Xmgl x 'y
Ste 70, 0(T4)

Week 13 (M) Page 6

Loop-Invariant Code Motion (cont.)

When should we do LICM?
e at IR level, more candidate operations

e assemby might be foo low-level . . l o |
e need guarantee that the loop is natural = no \vmpb %o m(tw e o'c e |Dop

How should we do LICM? Factors to consider
 safety —is the transformation semantics-preserving?
M GRS Snrg— 00CTetion 15 «Tuly losp-tnvasiant

- ovée«-:«\ o(- eventy (g QQMJ(’A

e profitability — is there any advantage to moving the instruction?

™MAY Cnd (P = Moving ingtruutions Kt w52 Nevd (or caveM) exeurted
- -Q.cm'\na)me \TNEINKL Com pw:wdo“
Krgn AURSSATY

Other Loop Optimizations

Strength reduction in for-loops
e replace multiplications with additions

Loop unrolling

e for a loop with a small, constant number of iterations, may actually take less time to
execute by just placing every copy of the loop body in sequence ~ .MPS

e may also consider doing multiple iterations within the body = QCVO‘ im&

Loop fusion
e merge 2 sequential, independent loops into a single loop body -~ S;QwG' \u\ngb

Week 13 (M) Page 7

	CS 536 Announcements for Monday, April 22, 2024
	Recall example from last time
	Optimization Overview
	Goals
	Safety guarantee
	Program Analysis
	Optimization Overview (cont.)
	Peephole optimization
	Peephole optimization (cont.)
	Loop-Invariant Code Motion (LICM)
	Loop-Invariant Code Motion (cont.)
	Other Loop Optimizations

