
CS 536
Final Exam

Thursday, May 11, 2006

2:45 — 4:45 PM

1221 CSST

Instructions
Answer any five questions. (If you answer more, only the first five will count.) Each

question is worth 20 points. Please try to make your answers neat and coherent.

Remember, if we can’t read it, it’s wrong. Partial credit will be given, so try to put

something down for each question (a blank answer always gets 0 points!).

1. Assume we have a CSX function whose header is

int t(int a, int b, int c) { …
and a call

z = t(0, 1, t(2, t(3,4,5), 6));

Show the JVM code you would generate for this call.

Explain the steps the JVM interpreter performs to actually do the indicated function

calls (parameter passing, frame manipulation, return address manipulation, etc.)

2. Assume that we add a “repeat until” loop to CSX:

repeat
stmts

until (condition);

condition is a boolean-valued expression that is evaluated at the end of each itera-

tion. Iteration terminates as soon as condition becomes true. At least one iteration

of the loop always occurs.

Show the JVM code you’d generate for this kind of loop. Design an AST structure

and code generator appropriate for this loop.

3. Assume we modify the structure of a CSX class to separate declarations and imple-

mentations. A class begins with class declarations. These are variable and constant

declarations (exactly the same as in original CSX) as well as method headers (without
method bodies).

An “implemented as” section follows that contains the bodies of each method

declared in the class. Each method declared in the class must have a body defined in

this section, and no body may be defined unless it has been previously declared. Here

is a simple example of this revised class structure:

class demo {
char skip = '\n';
int f();
void main();

implemented as
f: {return 10;}
main: { print("Ans =",f(), skip); }

}

What are the advantages of structuring a class in this manner (from the program-

mer’s point of view)?

What changes are needed in the structure of an AST classNode ? How must CSX

type checking and code generation be modified to compile this new class structure?

4. Consider the following three context-free grammars. Which are LL(1)? Why?

Which are LALR(1)? Why?

(i) S → x T y
T → A T
T → b
A → a
A → λ

(ii) S → { S }
S → { S ; }
S → return

(iii) S → Mode Access main
Mode → static
Mode → λ
Access → private
Access → λ

5. Most modern programming languages, including C, C++, Java and CSX, allow recur-

sive methods. However, most methods that we use aren’t recursive. Assume we know

that some method P isn’t recursive. How can we simplify the implementation of a call

of P?

Assume that we have a CSX program in AST form. How can we determine, by exam-

ining this AST, whether any of its methods are recursive? (You may assume that any

call within a method is reachable. That is, if a call of Q appears anywhere within P,

then any method that can call P can also indirectly call Q.)
-2-

6. Assume we know that some context-free grammar, G, is LL(1). Moreover, we also

know that no non-terminal in G generates only λ. If we remove all productions of the

form A → λ (i.e., all productions that directly derive λ), is the resulting grammar still

LL(1)?

If it is, carefully explain why. If it isn’t, present a simple counter-example that shows

that LL(1)-ness isn’t always preserved.

7. The JVM code we generate for variables and expressions normally pushes (or com-

putes) the value of a variable or expression onto the stack. Call this stack code.

An alternative is jump code. In jump code, evaluation of a boolean-valued variable or

expression results in a “jump” to either a true address (if the value is true) or a false
address (if the value is false). Jump code is particularly useful for loops and condition-

als since we want boolean values to control execution, jumping to one location or

another depending on the expression value.

Assume we have a boolean value (a zero or a one) at the top of the stack. What JVM

code should we generate to transform this value into a conditional jump to labels

L_true and L_false ?

Assume we have translated a boolean expression, e, into jump code that jumps to

L_true and L_false . How can we transform this generated code into jump code

that computes !e (where ! is the boolean not operator)?
-3-

	CS 536
	Final Exam
	1. Assume we have a CSX function whose header is
	2. Assume that we add a “repeat until” loop to CSX:
	3. Assume we modify the structure of a CSX class to separate declarations and implementations. A ...
	4. Consider the following three context-free grammars. Which are LL(1)? Why? Which are LALR(1)? Why?
	5. Most modern programming languages, including C, C++, Java and CSX, allow recursive methods. Ho...
	6. Assume we know that some context-free grammar, G, is LL(1). Moreover, we also know that no non...
	7. The JVM code we generate for variables and expressions normally pushes (or computes) the value...

