
CS 536

Final Exam

Tuesday, May 11, 1999

12:25 PM— 2:25 PM

6104 Social Sciences

Instructions
Answer any five questions. (If you answer more, only the first five will count.) Each

question is worth 20 points. Please try to make your answers neat and coherent.

Remember, if we can’t read it, it’s wrong. Partial credit will be given, so try to put

something down for each question (a blank answer always gets 0 points!).

1. Assume that we add a simple “for loop” to CSX:

for (id = init to limit)
stmt

id is any integer variable. init and limit are integer-valued expressions that are

evaluated once, at the beginning of the loop. Iteration terminates as soon as id is

greater than limit . Zero iterations are possible if init is greater than limit . At the

end of each iteration id is incremented by 1.

Show an outline of the JVM code you’d generate for this kind of loop. Design an AST

structure appropriate for this for loop.

2. Just as variables and fields may be initialized, some programming languages allow

formal parameters to be initialized. An initialized parameter provides a default value.

In a call of a method, a user may choose to not provide an explicit parameter value,

choosing the default instead. For example, given

int power(int base, int expo = 2) {
/* compute base**expo */}

the calls power(100,2) and power(100) both compute the same value (1002).

What changes would be needed in your CSX type checker to correctly handle initial-

ized formal parameters?

3. Recall that CSX allows no overloading. That is, in each scope each identifier must be

uniquely defined. However identifiers used as labels are very different from identifiers

used as variables, constants, parameters and methods. Hence allowing an identifier to

be used as both a label and “something else” within a scope might be reasonable.

Explain the changes that would have to be made to CSX symbol tables and type check-

ers to allow the same identifier to be used as a label and as one other thing (a variable,

constant, parameter or method) within the same scope. For example, the following

would be legal in extended CSX:

{ int i=21;
i: while (i > 0){

i = i - 1;
if (i == 17)

break i;
}

}

4. Let G be some context-free grammar and let A be a nonterminal symbol in G. Explain

how to test whether any of the terminal strings derived from A is odd in length.

5. (a) Consider the following context free grammar:

S → L a b
S → L a c
L → λ

Is this grammar LL(1)? Why? Is this grammar LALR(1)? Why?

(b) Consider the following context free grammar:

S → L S a
S → b
L → λ

Is this grammar LL(1)? Why? Is this grammar LALR(1)? Why?

(c) Consider the following context free grammar:

S → L a S
S → b
L → λ

Is this grammar LL(1)? Why? Is this grammar LALR(1)? Why?
-2-

6. A common compiler optimization is constant folding. This optimization replaces an

expression whose operands are all literal constants with the value the expression must

compute. For example, 1+2 can be folded into the value 3.

What changes would be needed in your code generation routines for CSX to support

folding of binary operators whose operands are both literals? Are any further

changes needed to implement folding when an operand is not a literal constant but

is an expression that can be folded into a literal value (for example, (1+2)*3)?

7. Assume we are translating a function or procedure call in CSX. Explain how we could

determine the exact number of stack locations that will be needed to evaluate and

store (on the stack) the parameters for the call. Illustrate your technique on the follow-

ing call:

p(a+g(1,2), x-(y-(p+1)));
-3-

	CS 536
	Final Exam
	1. Assume that we add a simple “for loop” to CSX:
	2. Just as variables and fields may be initialized, some programming languages allow formal param...
	3. Recall that CSX allows no overloading. That is, in each scope each identifier must be uniquely...
	4. Let G be some context-free grammar and let A be a nonterminal symbol in G. Explain how to test...
	5. (a) �Consider the following context free grammar:
	6. A common compiler optimization is constant folding. This optimization replaces an expression w...
	7. Assume we are translating a function or procedure call in CSX. Explain how we could determine ...

