
1CS 536  Fall 2012©

CS 536

Introduction to
 Programming Languages

and Compilers

Charles N. Fischer

Fall 2012

 http://www.cs.wisc.edu/~fischer/cs536.html

2CS 536  Fall 2012©

Class Meets
Mondays, Wednesdays &
Fridays,
11:00 — 11:50
204 Educational Sciences

Instructor
Charles N. Fischer
5393 Computer Sciences
Telephone:    608.262.1204
E-mail:  fischer@cs.wisc.edu
Office Hours:

10:30 - Noon, Tuesday &
Thursday,
or by appointment

3CS 536  Fall 2012©

Teaching Assistant
James Paton
1309 Computer Sciences
E-mail:  paton@cs.wisc.edu
Telephone:    608.262.1204
Office Hours:

Wednesday & Friday:
2:30 - 3:30
or by appointment

4CS 536  Fall 2012©

Key Dates
• September 19: Assignment #1

(Identifier Cross-
Reference Analysis)

• October 10: Assignment #2
(CSX Scanner)

• October 26:  Midterm (tentative)

• October 31:  Assignment #3
(CSX Parser)

• November 21:  Assignment #4
(CSX Type Checker)

• December 14:  Assignment #5
(CSX Code Generator)

• December 17: Final Exam
 2:45 pm - 4:45 pm



5CS 536  Fall 2012©

Class Text
• Crafting a Compiler

Fischer, Cytron, LeBlanc
ISBN-10: 0136067050
ISBN-13:  9780136067054
Publisher:  Addison-Wesley

• Handouts and Web-based reading will
also be used.

Reading Assignment
• Chapters 1-2 of CaC (as background)

Class Notes
• The lecture notes used in each lecture

will be made available prior to that
lecture on the class Web page (under
the “Lecture Nodes” link).

6CS 536  Fall 2012©

Instructional Computers
Departmental Linux machines
(mumble-01to mumble-40)
have been assigned to CS 536.
All necessary compilers and
tools will be available on these
machines. best-mumble will
connect you to a lightly used
machine.
You may also use your own
computer. It will be your
responsibility to load needed
software (instructions on where
to find needed software are
included on the class web
pages).

7CS 536  Fall 2012©

Academic Misconduct Policy

• You must do your assignments—no
copying or sharing of solutions.

• You may discuss general concepts and
Ideas.

• All cases of Misconduct must be
reported to the Dean’s office.

• Penalties may be severe.

8CS 536  Fall 2012©

Program & Homework Late
Policy
• An assignment may be handed in up

to one week late.

• Each late day will be debited 3%, up to
a maximum of 21%.

Approximate Grade Weights
Program 1 - Cross-Reference Analysis

 8%
Program 2 - Scanner 12%
Program 3 - Parser 12%
Program 4 - Type Checker 12%
Program 5 - Code Generator 12%
Homework #1  6%
Midterm Exam  19%
Final Exam (non-cumulative)  19%



9CS 536  Fall 2012©

Partnership Policy
• Program #1 and the written

homework must be done individually.

• For undergraduates, programs 2 to 5
may be done individually or by two
person teams (your choice). Graduate
students must do all assignments
individually.

10CS 536  Fall 2012©

Compilers
Compilers are fundamental to
modern computing.
They act as translators,
transforming human-oriented
programming languages into
computer-oriented machine
languages.
To most users, a compiler can
be viewed as a “black box” that
performs the transformation
shown below.

Programming
Language Machine

Language
Compiler

11CS 536  Fall 2012©

A compiler allows
programmers to ignore the
machine-dependent details of
programming.

Compilers allow programs and
programming skills to be
machine-independent and
platform-independent.

Compilers also aid in detecting
and correcting programming
errors (which are all too
common).

12CS 536  Fall 2012©

Compiler techniques also help
to improve computer security.
For example, the Java Bytecode
Verifier helps to guarantee that
Java security rules are satisfied.

Compilers currently help in
protection of intellectual
property (using obfuscation)
and provenance (through
watermarking).



13CS 536  Fall 2012©

History of Compilers
The term compiler was coined
in the early 1950s by Grace
Murray Hopper. Translation was
viewed as the “compilation” of
a sequence of machine-
language subprograms selected
from a library.

One of the first real compilers
was the FORTRAN compiler of
the late 1950s. It allowed a
programmer to use a problem-
oriented source language.

14CS 536  Fall 2012©

Ambitious “optimizations” were
used to produce efficient
machine code, which was vital
for early computers with quite
limited capabilities.

Efficient use of machine
resources is still an essential
requirement for modern
compilers.

15CS 536  Fall 2012©

Compilers Enable
Programming Languages

Programming languages are
used for much more than
“ordinary” computation.
• TeX and LaTeX use compilers to

translate text and formatting
commands into intricate
typesetting commands.

• Postscript, generated by text-
formatters like LaTeX, Word, and
FrameMaker, is really a
programming language. It is
translated and executed by laser
printers and document previewers
to produce a readable form of a
document. A standardized
document representation language
allows documents to be freely
interchanged, independent of how

16CS 536  Fall 2012©

they were created and how they
will be viewed.

• Mathmatica is an interactive system
that intermixes programming with
mathematics; it is possible to solve
intricate problems in both symbolic
and numeric form. This system
relies heavily on compiler
techniques to handle the
specification, internal
representation, and solution of
problems.

• Verilog and VHDL support the
creation of VLSI circuits. A silicon
compiler specifies the layout and
composition of a VLSI circuit mask,
using standard cell designs. Just as
an ordinary compiler understands
and enforces programming
language rules, a silicon compiler
understands and enforces the
design rules that dictate the
feasibility of a given circuit.



17CS 536  Fall 2012©

• Interactive tools often need a
programming language to support
automatic analysis and
modification of an artifact.
How do you automatically filter or
change a MS Word document? You
need a text-based specification that
can be processed, like a program,
to check validity or produce an
updated version.

18CS 536  Fall 2012©

When do We Run a Compiler?
• Prior to execution

This is standard. We compile a
program once, then use it repeatedly.

• At the start of each execution
We can incorporate values known at
the start of the run to improve
performance.
A program may be partially complied,
then completed with values set at
execution-time.

• During execution
Unused code need not be compiled.
Active or “hot” portions of a program
may be specially optimized.

• After execution
We can profile a program, looking for
heavily used routines, which can be
specially optimized for later runs.

19CS 536  Fall 2012©

What do Compilers Produce?
Pure Machine Code
Compilers may generate code
for a particular machine, not
assuming any operating system
or library routines. This is “pure
code” because it includes
nothing beyond the instruction
set. This form is rare; it is
sometimes used with system
implementation languages, that
define operating systems or
embedded applications (like a
programmable controller). Pure
code can execute on bare
hardware without dependence
on any other software.

20CS 536  Fall 2012©

Augmented Machine Code
Commonly, compilers generate
code for a machine architecture
augmented with operating
system routines and run-time
language support routines.
To use such a program, a
particular operating system
must be used and a collection
of run-time support routines
(I/O, storage allocation,
mathematical functions, etc.)
must be available. The
combination of machine
instruction and OS and run-time
routines define a virtual
machine—a computer that
exists only as a hardware/
software combination.



21CS 536  Fall 2012©

Virtual Machine Code
Generated code can consist
entirely of virtual instructions
(no native code at all). This
allows code to run on a variety
of computers.
Java, with its JVM (Java Virtual
Machine) is a great example of
this approach.
If the virtual machine is kept
simple and clean, its interpreter
can be easy to write. Machine
interpretation slows execution
by a factor of 3:1 to perhaps
10:1 over compiled code.
A “Just in Time” (JIT) compiler
can translate “hot” portions of
virtual code into native code to
speed execution.

22CS 536  Fall 2012©

Advantages of Virtual
Instructions

Virtual instructions serve a
variety of purposes.
• They simplify a compiler by

providing suitable primitives (such
as method calls, string
manipulation, and so on).

• They aid compiler transportability.
• They may decrease in the size of

generated code since instructions
are designed to match a particular
programming language (for
example, JVM code for Java).

Almost all compilers, to a
greater or lesser extent,
generate code for a virtual
machine, some of whose
operations must be interpreted.

23CS 536  Fall 2012©

Formats of Translated
Programs

Compilers differ in the format
of the target code they
generate. Target formats may
be categorized as assembly
language, relocatable binary,
or memory-image.

• Assembly Language (Symbolic)
Format

A text file containing assembler
source code is produced. A
number of code generation
decisions (jump targets, long
vs. short address forms, and so
on) can be left for the
assembler. This approach is
good for instructional projects.

24CS 536  Fall 2012©

Generating assembler code
supports cross-compilation
(running a compiler on one
computer, while its target is a
second computer). Generating
assembly language also
simplifies debugging and
understanding a compiler
(since you can see the
generated code).

C (rather than a specific
assembly language) can
generated, treating C as a
“universal assembly language.”



25CS 536  Fall 2012©

C is far more machine-
independent than any
particular assembly language.
However, some aspects of a
program (such as the run-time
representations of program and
data) are inaccessible using C
code, but readily accessible in
assembly language.

26CS 536  Fall 2012©

• Relocatable Binary Format

Target code may be generated
in a binary format with
external references and local
instruction and data addresses
are not yet bound. Instead,
addresses are assigned relative
to the beginning of the module
or relative to symbolically
named locations. A linkage step
adds support libraries and
other separately compiled
routines and produces an
absolute binary program
format that is executable.

27CS 536  Fall 2012©

• Memory-Image (Absolute Binary)
Form

Compiled code may be loaded
into memory and immediately
executed. This is faster than
going through the intermediate
step of link/editing. The ability
to access library and
precompiled routines may be
limited. The program must be
recompiled for each execution.
Memory-image compilers are
useful for student and
debugging use, where frequent
changes are the rule and
compilation costs far exceed
execution costs.

28CS 536  Fall 2012©

Java is designed to use and
share classes designed and
implemented at a variety of
sites. Rather than use a fixed
copy of a class (which may be
outdated), the JVM supports
dynamic linking of externally
defined classes. When first
referenced, a class definition
may be remotely fetched,
checked, and loaded during
program execution. In this way
“foreign code” can be
guaranteed to be up-to-date
and secure.



29CS 536  Fall 2012©

The Structure of a Compiler
A compiler performs two major
tasks:
• Analysis of the source program

being compiled
• Synthesis of a target program

Almost all modern compilers
are syntax-directed: The
compilation process is driven
by the syntactic structure of the
source program.
A parser builds semantic
structure out of tokens, the
elementary symbols of
programming language syntax.
Recognition of syntactic
structure is a major part of the
analysis task.

30CS 536  Fall 2012©

Semantic analysis examines the
meaning (semantics) of the
program. Semantic analysis
plays a dual role.
It finishes the analysis task by
performing a variety of
correctness checks (for
example, enforcing type and
scope rules). Semantic analysis
also begins the synthesis
phase.

The synthesis phase may
translate source programs into
some intermediate
representation (IR) or it may
directly generate target code.

31CS 536  Fall 2012©

If an IR is generated, it then
serves as input to a code
generator component that
produces the desired machine-
language program. The IR may
optionally be transformed by
an optimizer so that a more
efficient program may be
generated.

32CS 536  Fall 2012©

Type Checker

Optimizer

Code

Scanner

Symbol Tables

Parser

Source
Program

(Character
Stream)

Tokens Syntax
Tree

(AST)

Decorated
AST

Intermediate
Representation

(IR)

IR

Generator

Target Machine
Code

Translator

Abstract

The Structure of a Syntax-Directed Compiler


