
18CS 536 Fall 2012©

When do We Run a Compiler?
• Prior to execution

This is standard. We compile a
program once, then use it repeatedly.

• At the start of each execution
We can incorporate values known at
the start of the run to improve
performance.
A program may be partially complied,
then completed with values set at
execution-time.

• During execution
Unused code need not be compiled.
Active or “hot” portions of a program
may be specially optimized.

• After execution
We can profile a program, looking for
heavily used routines, which can be
specially optimized for later runs.

19CS 536 Fall 2012©

What do Compilers Produce?
Pure Machine Code
Compilers may generate code
for a particular machine, not
assuming any operating system
or library routines. This is “pure
code” because it includes
nothing beyond the instruction
set. This form is rare; it is
sometimes used with system
implementation languages, that
define operating systems or
embedded applications (like a
programmable controller). Pure
code can execute on bare
hardware without dependence
on any other software.

20CS 536 Fall 2012©

Augmented Machine Code
Commonly, compilers generate
code for a machine architecture
augmented with operating
system routines and run-time
language support routines.
To use such a program, a
particular operating system
must be used and a collection
of run-time support routines
(I/O, storage allocation,
mathematical functions, etc.)
must be available. The
combination of machine
instruction and OS and run-time
routines define a virtual
machine—a computer that
exists only as a hardware/
software combination.

21CS 536 Fall 2012©

Virtual Machine Code
Generated code can consist
entirely of virtual instructions
(no native code at all). This
allows code to run on a variety
of computers.
Java, with its JVM (Java Virtual
Machine) is a great example of
this approach.
If the virtual machine is kept
simple and clean, its interpreter
can be easy to write. Machine
interpretation slows execution
by a factor of 3:1 to perhaps
10:1 over compiled code.
A “Just in Time” (JIT) compiler
can translate “hot” portions of
virtual code into native code to
speed execution.

22CS 536 Fall 2012©

Advantages of Virtual
Instructions

Virtual instructions serve a
variety of purposes.
• They simplify a compiler by

providing suitable primitives (such
as method calls, string
manipulation, and so on).

• They aid compiler transportability.
• They may decrease in the size of

generated code since instructions
are designed to match a particular
programming language (for
example, JVM code for Java).

Almost all compilers, to a
greater or lesser extent,
generate code for a virtual
machine, some of whose
operations must be interpreted.

23CS 536 Fall 2012©

Formats of Translated
Programs

Compilers differ in the format
of the target code they
generate. Target formats may
be categorized as assembly
language, relocatable binary,
or memory-image.

• Assembly Language (Symbolic)
Format

A text file containing assembler
source code is produced. A
number of code generation
decisions (jump targets, long
vs. short address forms, and so
on) can be left for the
assembler. This approach is
good for instructional projects.

24CS 536 Fall 2012©

Generating assembler code
supports cross-compilation
(running a compiler on one
computer, while its target is a
second computer). Generating
assembly language also
simplifies debugging and
understanding a compiler
(since you can see the
generated code).

C (rather than a specific
assembly language) can
generated, treating C as a
“universal assembly language.”

25CS 536 Fall 2012©

C is far more machine-
independent than any
particular assembly language.
However, some aspects of a
program (such as the run-time
representations of program and
data) are inaccessible using C
code, but readily accessible in
assembly language.

26CS 536 Fall 2012©

• Relocatable Binary Format

Target code may be generated
in a binary format with
external references and local
instruction and data addresses
are not yet bound. Instead,
addresses are assigned relative
to the beginning of the module
or relative to symbolically
named locations. A linkage step
adds support libraries and
other separately compiled
routines and produces an
absolute binary program
format that is executable.

27CS 536 Fall 2012©

• Memory-Image (Absolute Binary)
Form

Compiled code may be loaded
into memory and immediately
executed. This is faster than
going through the intermediate
step of link/editing. The ability
to access library and
precompiled routines may be
limited. The program must be
recompiled for each execution.
Memory-image compilers are
useful for student and
debugging use, where frequent
changes are the rule and
compilation costs far exceed
execution costs.

28CS 536 Fall 2012©

Java is designed to use and
share classes designed and
implemented at a variety of
sites. Rather than use a fixed
copy of a class (which may be
outdated), the JVM supports
dynamic linking of externally
defined classes. When first
referenced, a class definition
may be remotely fetched,
checked, and loaded during
program execution. In this way
“foreign code” can be
guaranteed to be up-to-date
and secure.

29CS 536 Fall 2012©

The Structure of a Compiler
A compiler performs two major
tasks:
• Analysis of the source program

being compiled
• Synthesis of a target program

Almost all modern compilers
are syntax-directed: The
compilation process is driven
by the syntactic structure of the
source program.
A parser builds semantic
structure out of tokens, the
elementary symbols of
programming language syntax.
Recognition of syntactic
structure is a major part of the
analysis task.

30CS 536 Fall 2012©

Semantic analysis examines the
meaning (semantics) of the
program. Semantic analysis
plays a dual role.
It finishes the analysis task by
performing a variety of
correctness checks (for
example, enforcing type and
scope rules). Semantic analysis
also begins the synthesis
phase.

The synthesis phase may
translate source programs into
some intermediate
representation (IR) or it may
directly generate target code.

31CS 536 Fall 2012©

If an IR is generated, it then
serves as input to a code
generator component that
produces the desired machine-
language program. The IR may
optionally be transformed by
an optimizer so that a more
efficient program may be
generated.

32CS 536 Fall 2012©

Type Checker

Optimizer

Code

Scanner

Symbol Tables

Parser

Source
Program

(Character
Stream)

Tokens Syntax
Tree

(AST)

Decorated
AST

Intermediate
Representation

(IR)

IR

Generator

Target Machine
Code

Translator

Abstract

The Structure of a Syntax-Directed Compiler

33CS 536 Fall 2012©

Scanner
The scanner reads the source
program, character by
character. It groups individual
characters into tokens
(identifiers, integers, reserved
words, delimiters, and so on).
When necessary, the actual
character string comprising the
token is also passed along for
use by the semantic phases.
The scanner:
• Puts the program into a compact

and uniform format (a stream of
tokens).

• Eliminates unneeded information
(such as comments).

• Sometimes enters preliminary
information into symbol tables (for

34CS 536 Fall 2012©

example, to register the presence
of a particular label or identifier).

• Optionally formats and lists the
source program

Building tokens is driven by
token descriptions defined
using regular expression
notation.
Regular expressions are a
formal notation able to
describe the tokens used in
modern programming
languages. Moreover, they can
drive the automatic generation
of working scanners given only
a specification of the tokens.
Scanner generators (like Lex,
Flex and JLex) are valuable
compiler-building tools.

35CS 536 Fall 2012©

Parser
Given a syntax specification (as
a context-free grammar, CFG),
the parser reads tokens and
groups them into language
structures.
Parsers are typically created
from a CFG using a parser
generator (like Yacc, Bison or
Java CUP).
The parser verifies correct
syntax and may issue a syntax
error message.
As syntactic structure is
recognized, the parser usually
builds an abstract syntax tree
(AST), a concise representation
of program structure, which
guides semantic processing.

36CS 536 Fall 2012©

Type Checker
(Semantic Analysis)

The type checker checks the
static semantics of each AST
node. It verifies that the construct
is legal and meaningful (that all
identifiers involved are declared,
that types are correct, and so on).
If the construct is semantically
correct, the type checker
“decorates” the AST node, adding
type or symbol table information
to it. If a semantic error is
discovered, a suitable error
message is issued.
Type checking is purely
dependent on the semantic rules
of the source language. It is
independent of the compiler’s
target machine.

37CS 536 Fall 2012©

Translator
(Program Synthesis)

If an AST node is semantically
correct, it can be translated.
Translation involves capturing
the run-time “meaning” of a
construct.
For example, an AST for a while
loop contains two subtrees,
one for the loop’s control
expression, and the other for
the loop’s body. Nothing in the
AST shows that a while loop
loops! This “meaning” is
captured when a while loop’s
AST is translated. In the IR, the
notion of testing the value of
the loop control expression,

38CS 536 Fall 2012©

and conditionally executing the
loop body becomes explicit.
The translator is dictated by the
semantics of the source
language. Little of the nature of
the target machine need be
made evident. Detailed
information on the nature of
the target machine (operations
available, addressing, register
characteristics, etc.) is reserved
for the code generation phase.
In simple non-optimizing
compilers (like our class
project), the translator
generates target code directly,
without using an IR.
More elaborate compilers may
first generate a high-level IR

39CS 536 Fall 2012©

(that is source language
oriented) and then
subsequently translate it into a
low-level IR (that is target
machine oriented). This
approach allows a cleaner
separation of source and target
dependencies.

40CS 536 Fall 2012©

Optimizer
The IR code generated by the
translator is analyzed and
transformed into functionally
equivalent but improved IR code
by the optimizer.
The term optimization is
misleading: we don’t always
produce the best possible
translation of a program, even
after optimization by the best of
compilers.
Why?
Some optimizations are
impossible to do in all
circumstances because they
involve an undecidable problem.
Eliminating unreachable (“dead”)
code is, in general, impossible.

41CS 536 Fall 2012©

Other optimizations are too
expensive to do in all cases.
These involve NP-complete
problems, believed to be
inherently exponential.
Assigning registers to variables
is an example of an NP-complete
problem.
Optimization can be complex; it
may involve numerous
subphases, which may need to
be applied more than once.
Optimizations may be turned off
to speed translation.
Nonetheless, a well designed
optimizer can significantly speed
program execution by
simplifying, moving or
eliminating unneeded
computations.

42CS 536 Fall 2012©

Code Generator
IR code produced by the
translator is mapped into target
machine code by the code
generator. This phase uses
detailed information about the
target machine and includes
machine-specific optimizations
like register allocation and code
scheduling.
Code generators can be quite
complex since good target
code requires consideration of
many special cases.
Automatic generation of code
generators is possible. The
basic approach is to match a
low-level IR to target
instruction templates, choosing

43CS 536 Fall 2012©

instructions which best match
each IR instruction.
A well-known compiler using
automatic code generation
techniques is the GNU C
compiler. GCC is a heavily
optimizing compiler with
machine description files for
over ten popular computer
architectures, and at least two
language front ends (C and
C++).

44CS 536 Fall 2012©

Symbol Tables
A symbol table allows
information to be associated
with identifiers and shared
among compiler phases. Each
time an identifier is used, a
symbol table provides access
to the information collected
about the identifier when its
declaration was processed.

45CS 536 Fall 2012©

Example
Our source language will be
CSX, a blend of C, C++ and
Java.
Our target language will be the
Java JVM, using the Jasmin
assembler.

• A simple source line is
 a = bb+abs(c-7);
this is a sequence of ASCII characters
in a text file.

• The scanner groups characters into
tokens, the basic units of a program.

a = bb+abs(c-7);
After scanning, we have the following
token sequence:
 Ida Asg Idbb Plus Idabs Lparen Idc

Minus IntLiteral7 Rparen Semi

46CS 536 Fall 2012©

• The parser groups these tokens into
language constructs (expressions,
statements, declarations, etc.)
represented in tree form:

(What happened to the
parentheses and the
semicolon?)

Asg

Ida Plus

Idbb Call

Idabs Minus

Idc IntLiteral7

47CS 536 Fall 2012©

• The type checker resolves types and
binds declarations within scopes:

Asg

Ida Plus

Idbb Call

Idabs Minus

Idc IntLiteral7

int

intintloc

intloc int

int

intloc
int

method

48CS 536 Fall 2012©

• Finally, JVM code is generated for each
node in the tree (leaves first, then
roots):
iload 3 ; push local 3 (bb)
iload 2 ; push local 2 (c)
ldc 7 ; Push literal 7
isub ; compute c-7
invokestatic java/lang/Math/
abs(I)I
iadd ; compute bb+abs(c-7)
istore 1 ; store result into

local 1(a)

49CS 536 Fall 2012©

Symbol Tables & Scoping
Programming languages use
scopes to limit the range in
which an identifier is active
(and visible).
Within a scope a name may be
defined only once (though
overloading may be allowed).
A symbol table (or dictionary) is
commonly used to collect all
the definitions that appear
within a scope.
At the start of a scope, the
symbol table is empty. At the
end of a scope, all declarations
within that scope are available
within the symbol table.

50CS 536 Fall 2012©

A language definition may or
may not allow forward
references to an identifier.
If forward references are
allowed, you may use a name
that is defined later in the
scope (Java does this for field
and method declarations within
a class).
If forward references are not
allowed, an identifier is visible
only after its declaration. C,
C++ and Java do this for
variable declarations.
In CSX no forward references
are allowed.
In terms of symbol tables,
forward references require two
passes over a scope. First all

51CS 536 Fall 2012©

declarations are gathered.
Next, all references are
resolved using the complete set
of declarations stored in the
symbol table.
If forward references are
disallowed, one pass through a
scope suffices, processing
declarations and uses of
identifiers together.

52CS 536 Fall 2012©

Block Structured Languages
• Introduced by Algol 60, includes C,

C++, CSX and Java.

• Identifiers may have a non-global
scope. Declarations may be local to a
class, subprogram or block.

• Scopes may nest, with declarations
propagating to inner (contained)
scopes.

• The lexically nearest declaration of an
identifier is bound to uses of that
identifier.

53CS 536 Fall 2012©

Example (drawn from C):

int x,z;
void A() {
float x,y;

 print(x,y,z);

}
void B() {
 print (x,y,z)

}

float
float

int

int

int
undeclared

54CS 536 Fall 2012©

Block Structure Concepts
• Nested Visibility

No access to identifiers outside
their scope.

• Nearest Declaration Applies

Using static nesting of scopes.
• Automatic Allocation and Deallocation

of Locals

Lifetime of data objects is
bound to the scope of the
Identifiers that denote them.

55CS 536 Fall 2012©

Is Case Significant?
In some languages (C, C++,
Java and many others) case is
significant in identifiers. This
means aa and AA are different
symbols that may have entirely
different definitions.
In other languages (Pascal, Ada,
Scheme, CSX) case is not
significant. In such languages
aa and AA are two alternative
spellings of the same identifier.
Data structures commonly used
to implement symbol tables
usually treat different cases as
different symbols. This is fine
when case is significant in a
language. When case is
insignificant, you probably will

56CS 536 Fall 2012©

need to strip case before
entering or looking up
identifiers.
This just means that identifiers
are converted to a uniform case
before they are entered or
looked up. Thus if we choose to
use lower case uniformly, the
identifiers aaa, AAA, and AaA are
all converted to aaa for
purposes of insertion or
lookup.
BUT, inside the symbol table the
identifier is stored in the form it
was declared so that
programmers see the form of
identifier they expect in
listings, error messages, etc.

57CS 536 Fall 2012©

How are Symbol Tables
Implemented?

There are a number of data
structures that can reasonably
be used to implement a symbol
table:
• An Ordered List

Symbols are stored in a linked list,
sorted by the symbol’s name. This
is simple, but may be a bit too slow
if many identifiers appear in a
scope.

• A Binary Search Tree
Lookup is much faster than in
linked lists, but rebalancing may be
needed. (Entering identifiers in
sorted order turns a search tree
into a linked list.)

• Hash Tables
The most popular choice.

58CS 536 Fall 2012©

Implementing Block-
Structured Symbol Tables

To implement a block
structured symbol table we
need to be able to efficiently
open and close individual
scopes, and limit insertion to
the innermost current scope.
This can be done using one
symbol table structure if we tag
individual entries with a “scope
number.”
It is far easier (but more
wasteful of space) to allocate
one symbol table for each
scope. Open scopes are
stacked, pushing and popping
tables as scopes are opened
and closed.

59CS 536 Fall 2012©

Be careful though—many
preprogrammed stack
implementations don’t allow
you to “peek” at entries below
the stack top. This is necessary
to lookup an identifier in all
open scopes.
If a suitable stack
implementation (with a peek
operation) isn’t available, a
linked list of symbol tables will
suffice.

