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Scanner
The scanner reads the source
program, character by
character. It groups individual
characters into tokens
(identifiers, integers, reserved
words, delimiters, and so on).
When necessary, the actual
character string comprising the
token is also passed along for
use by the semantic phases.
The scanner:
• Puts the program into a compact

and uniform format (a stream of
tokens).

• Eliminates unneeded information
(such as comments).

• Sometimes enters preliminary
information into symbol tables (for



34CS 536  Fall 2012©

example, to register the presence
of a particular label or identifier).

• Optionally formats and lists the
source program

Building tokens is driven by
token descriptions defined
using regular expression
notation.
Regular expressions are a
formal notation able to
describe the tokens used in
modern programming
languages. Moreover, they can
drive the automatic generation
of working scanners given only
a specification of the tokens.
Scanner generators (like Lex,
Flex and JLex) are valuable
compiler-building tools.
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Parser
Given a syntax specification (as
a context-free grammar, CFG),
the parser reads tokens and
groups them into language
structures.
Parsers are typically created
from a CFG using a parser
generator (like Yacc, Bison or
Java CUP).
The parser verifies correct
syntax and may issue a syntax
error message.
As syntactic structure is
recognized, the parser usually
builds an abstract syntax tree
(AST), a concise representation
of program structure, which
guides semantic processing.
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Type Checker
(Semantic Analysis)

The type checker checks the
static semantics of each AST
node. It verifies that the construct
is legal and meaningful (that all
identifiers involved are declared,
that types are correct, and so on).
If the construct is semantically
correct, the type checker
“decorates” the AST node, adding
type or symbol table information
to it. If a semantic error is
discovered, a suitable error
message is issued.
Type checking is purely
dependent on the semantic rules
of the source language. It is
independent of the compiler’s
target machine.
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Translator
(Program Synthesis)

If an AST node is semantically
correct, it can be translated.
Translation involves capturing
the run-time “meaning” of a
construct.
For example, an AST for a while
loop contains two subtrees,
one for the loop’s control
expression, and the other for
the loop’s body. Nothing in the
AST shows that a while loop
loops! This “meaning” is
captured when a while loop’s
AST is translated. In the IR, the
notion of testing the value of
the loop control expression,
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and conditionally executing the
loop body becomes explicit.
The translator is dictated by the
semantics of the source
language. Little of the nature of
the target machine need be
made evident. Detailed
information on the nature of
the target machine (operations
available, addressing, register
characteristics, etc.) is reserved
for the code generation phase.
In simple non-optimizing
compilers (like our class
project), the translator
generates target code directly,
without using an IR.
More elaborate compilers may
first generate a high-level IR
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(that is source language
oriented) and then
subsequently translate it into a
low-level IR (that is target
machine oriented). This
approach allows a cleaner
separation of source and target
dependencies.
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Optimizer
The IR code generated by the
translator is analyzed and
transformed into functionally
equivalent but improved IR code
by the optimizer.
The term optimization is
misleading: we don’t always
produce the best possible
translation of a program, even
after optimization by the best of
compilers.
Why?
Some optimizations are
impossible to do in all
circumstances because they
involve an undecidable problem.
Eliminating unreachable (“dead”)
code is, in general, impossible.



41CS 536  Fall 2012©

Other optimizations are too
expensive to do in all cases.
These involve NP-complete
problems, believed to be
inherently exponential.
Assigning registers to variables
is an example of an NP-complete
problem.
Optimization can be complex; it
may involve numerous
subphases, which may need to
be applied more than once.
Optimizations may be turned off
to speed translation.
Nonetheless, a well designed
optimizer can significantly speed
program execution by
simplifying, moving or
eliminating unneeded
computations.
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Code Generator
IR code produced by the
translator is mapped into target
machine code by the code
generator. This phase uses
detailed information about the
target machine and includes
machine-specific optimizations
like register allocation and code
scheduling.
Code generators can be quite
complex since good target
code requires consideration of
many special cases.
Automatic generation of code
generators is possible. The
basic approach is to match a
low-level IR to target
instruction templates, choosing
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instructions which best match
each IR instruction.
A well-known compiler using
automatic code generation
techniques is the GNU C
compiler. GCC is a heavily
optimizing compiler with
machine description files for
over ten popular computer
architectures, and at least two
language front ends (C and
C++).
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Symbol Tables
A symbol table allows
information to be associated
with identifiers and shared
among compiler phases. Each
time an identifier is used, a
symbol table provides access
to the information collected
about the identifier when its
declaration was processed.
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Example
Our source language will be
CSX, a blend of C, C++ and
Java.
Our target language will be the
Java JVM, using the Jasmin
assembler.

• A simple source line is
 a = bb+abs(c-7);
this is a sequence of ASCII characters
in a text file.

• The scanner groups characters into
tokens, the basic units of a program.

a = bb+abs(c-7);
After scanning, we have the following
token sequence:
 Ida Asg Idbb Plus Idabs Lparen  Idc

Minus  IntLiteral7  Rparen Semi
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• The parser groups these tokens into
language constructs (expressions,
statements, declarations, etc.)
represented in tree form:

(What happened to the
parentheses and the
semicolon?)

Asg

Ida Plus

Idbb Call

Idabs Minus

Idc IntLiteral7
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• The type checker resolves types and
binds declarations within scopes:

Asg

Ida Plus

Idbb Call

Idabs Minus

Idc IntLiteral7

int

intintloc

intloc int

int

intloc
int

method
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• Finally, JVM code is generated for each
node in the tree (leaves first, then
roots):
iload  3  ; push local 3 (bb)
iload  2  ; push local 2 (c)
ldc 7 ; Push literal 7
isub      ; compute c-7
invokestatic  java/lang/Math/
abs(I)I
iadd      ; compute bb+abs(c-7)
istore  1 ; store result into

local 1(a)
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Symbol Tables & Scoping
Programming languages use
scopes to limit the range in
which an identifier is active
(and visible).
Within a scope a name may be
defined only once (though
overloading may be allowed).
A symbol table (or dictionary) is
commonly used to collect all
the definitions that appear
within a scope.
At the start of a scope, the
symbol table is empty. At the
end of a scope, all declarations
within that scope are available
within the symbol table.
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A language definition may or
may not allow forward
references to an identifier.
If forward references are
allowed, you may use a name
that is defined later in the
scope (Java does this for field
and method declarations within
a class).
If forward references are not
allowed, an identifier is visible
only after its declaration. C,
C++ and Java do this for
variable declarations.
In CSX no forward references
are allowed.
In terms of symbol tables,
forward references require two
passes over a scope. First all
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declarations are gathered.
Next, all references are
resolved using the complete set
of declarations stored in the
symbol table.
If forward references are
disallowed, one pass through a
scope suffices, processing
declarations and uses of
identifiers together.
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Block Structured Languages
• Introduced by Algol 60, includes C,

C++, CSX and Java.

• Identifiers may have a non-global
scope. Declarations may be local to a
class, subprogram or block.

• Scopes may nest, with declarations
propagating to inner (contained)
scopes.

• The lexically nearest declaration of an
identifier is bound to uses of that
identifier.
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Example (drawn from C):

int x,z;
void A() {
float x,y;

  print(x,y,z);

}
void B() {
  print (x,y,z)

}

float
float

int

int

int
undeclared
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Block Structure Concepts
• Nested Visibility

No access to identifiers outside
their scope.

• Nearest Declaration Applies

Using static nesting of scopes.
• Automatic Allocation and Deallocation

of Locals

Lifetime of data objects is
bound to the scope of the
Identifiers that denote them.
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Is Case Significant?
In some languages (C, C++,
Java and many others) case is
significant in identifiers. This
means aa and AA are different
symbols that may have entirely
different definitions.
In other languages (Pascal, Ada,
Scheme, CSX) case is not
significant. In such languages
aa and AA are two alternative
spellings of the same identifier.
Data structures commonly used
to implement symbol tables
usually treat different cases as
different symbols. This is fine
when case is significant in a
language. When case is
insignificant, you probably will
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need to strip case before
entering or looking up
identifiers.
This just means that identifiers
are converted to a uniform case
before they are entered or
looked up. Thus if we choose to
use lower case uniformly, the
identifiers aaa, AAA, and AaA are
all converted to aaa for
purposes of insertion or
lookup.
BUT, inside the symbol table the
identifier is stored in the form it
was declared so that
programmers see the form of
identifier they expect in
listings, error messages, etc.
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How are Symbol Tables
Implemented?

There are a number of data
structures that can reasonably
be used to implement a symbol
table:
• An Ordered List

Symbols are stored in a linked list,
sorted by the symbol’s name. This
is simple, but may be a bit too slow
if many identifiers appear in a
scope.

• A Binary Search Tree
Lookup is much faster than in
linked lists, but rebalancing may be
needed. (Entering identifiers in
sorted order turns a search tree
into a linked list.)

• Hash Tables
The most popular choice.
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Implementing Block-
Structured Symbol Tables

To implement a block
structured symbol table we
need to be able to efficiently
open and close individual
scopes, and limit insertion to
the innermost current scope.
This can be done using one
symbol table structure if we tag
individual entries with a “scope
number.”
It is far easier (but more
wasteful of space) to allocate
one symbol table for each
scope. Open scopes are
stacked, pushing and popping
tables as scopes are opened
and closed.
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Be careful though—many
preprogrammed stack
implementations don’t allow
you to “peek” at entries below
the stack top. This is necessary
to lookup an identifier in all
open scopes.
If a suitable stack
implementation (with a peek
operation) isn’t available, a
linked list of symbol tables will
suffice.
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Reading Assignment
Read Chapter 3 of
Crafting a Compiler.
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Scanning
A scanner transforms a character
stream into a token stream.
A scanner is sometimes called a
lexical analyzer or lexer.
Scanners use a formal notation
(regular expressions) to specify
the precise structure of tokens.
But why bother? Aren’t tokens
very simple in structure?
Token structure can be more
detailed and subtle than one
might expect. Consider simple
quoted strings in C, C++ or Java.
The body of a string can be any
sequence of characters except a
quote character (which must be
escaped). But is this simple
definition really correct?
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Can a newline character appear in
a string? In C it cannot, unless it is
escaped with a backslash.
C, C++ and Java allow escaped
newlines in strings, Pascal forbids
them entirely. Ada forbids all
unprintable characters.
Are null strings (zero-length)
allowed? In C, C++, Java and Ada
they are, but Pascal forbids them.
(In Pascal a string is a packed
array of characters, and zero
length arrays are disallowed.)
A precise definition of tokens can
ensure that lexical rules are
clearly stated and properly
enforced.
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Regular Expressions
Regular expressions specify
simple (possibly infinite) sets of
strings. Regular expressions
routinely specify the tokens
used in programming
languages.
Regular expressions can drive a
scanner generator.
Regular expressions are widely
used in computer utilities:
•The Unix utility grep uses regular

expressions to define search
patterns in files.

•Unix shells allow regular
expressions in file lists for a
command.
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• Most editors provide a “context
search” command that specifies
desired matches using regular
expressions.

•The Windows Find utility allows
some regular expressions.


