
60CS 536 Fall 2012©

Reading Assignment
Read Chapter 3 of
Crafting a Compiler.

61CS 536 Fall 2012©

Scanning
A scanner transforms a character
stream into a token stream.
A scanner is sometimes called a
lexical analyzer or lexer.
Scanners use a formal notation
(regular expressions) to specify
the precise structure of tokens.
But why bother? Aren’t tokens
very simple in structure?
Token structure can be more
detailed and subtle than one
might expect. Consider simple
quoted strings in C, C++ or Java.
The body of a string can be any
sequence of characters except a
quote character (which must be
escaped). But is this simple
definition really correct?

62CS 536 Fall 2012©

Can a newline character appear in
a string? In C it cannot, unless it is
escaped with a backslash.
C, C++ and Java allow escaped
newlines in strings, Pascal forbids
them entirely. Ada forbids all
unprintable characters.
Are null strings (zero-length)
allowed? In C, C++, Java and Ada
they are, but Pascal forbids them.
(In Pascal a string is a packed
array of characters, and zero
length arrays are disallowed.)
A precise definition of tokens can
ensure that lexical rules are
clearly stated and properly
enforced.

63CS 536 Fall 2012©

Regular Expressions
Regular expressions specify
simple (possibly infinite) sets of
strings. Regular expressions
routinely specify the tokens
used in programming
languages.
Regular expressions can drive a
scanner generator.
Regular expressions are widely
used in computer utilities:
•The Unix utility grep uses regular

expressions to define search
patterns in files.

•Unix shells allow regular
expressions in file lists for a
command.

64CS 536 Fall 2012©

• Most editors provide a “context
search” command that specifies
desired matches using regular
expressions.

•The Windows Find utility allows
some regular expressions.

65CS 536 Fall 2012©

Regular Sets
The sets of strings defined by
regular expressions are called
regular sets.
When scanning, a token class will
be a regular set, whose structure
is defined by a regular
expression.
Particular instances of a token
class are sometimes called
lexemes, though we will simply
call a string in a token class an
instance of that token. Thus we
call the string abc an identifier if
it matches the regular expression
that defines valid identifier
tokens.
Regular expressions use a finite
character set, or vocabulary
(denoted Σ).

66CS 536 Fall 2012©

This vocabulary is normally the
character set used by a computer.
Today, the ASCII character set,
which contains a total of 128
characters, is very widely used.
Java uses the Unicode character
set which includes all the ASCII
characters as well as a wide
variety of other characters.
An empty or null string is allowed
(denoted λ, “lambda”). Lambda
represents an empty buffer in
which no characters have yet
been matched. It also represents
optional parts of tokens. An
integer literal may begin with a
plus or minus, or it may begin
with λ if it is unsigned.

67CS 536 Fall 2012©

Catenation
Strings are built from characters
in the character set Σ via
catenation.
As characters are catenated to a
string, it grows in length. The
string do is built by first
catenating d to λ, and then
catenating o to the string d. The
null string, when catenated with
any string s, yields s. That is, s λ ≡
λ s ≡ s. Catenating λ to a string is
like adding 0 to an integer—
nothing changes.
Catenation is extended to sets of
strings:
Let P and Q be sets of strings.
(The symbol ∈ represents set
membership.) If s1 ∈ P and s2 ∈ Q
then string s1s2 ∈(P Q).

68CS 536 Fall 2012©

Alternation
Small finite sets are conveniently
represented by listing their
elements. Parentheses delimit
expressions, and |, the alternation
operator, separates alternatives.
For example, D, the set of the ten
single digits, is defined as
D = (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9).
The characters (,), ' , ∗, +, and |
are meta-characters (punctuation
and regular expression
operators).
Meta-characters must be quoted
when used as ordinary characters
to avoid ambiguity.

69CS 536 Fall 2012©

For example the expression
('(' | ')' | ; | ,)
defines four single character
tokens (left parenthesis, right
parenthesis, semicolon and
comma). The parentheses are
quoted when they represent
individual tokens and are not
used as delimiters in a larger
regular expression.
Alternation is extended to sets of
strings:
Let P and Q be sets of strings.
Then string s ∈ (P | Q) if and only
if s ∈ P or s ∈ Q.
For example, if LC is the set of
lower-case letters and UC is the
set of upper-case letters, then
(LC | UC) is the set of all letters (in
either case).

70CS 536 Fall 2012©

Kleene Closure
A useful operation is Kleene
closure represented by a postfix ∗
operator.

Let P be a set of strings. Then P *

represents all strings formed by
the catenation of zero or more
selections (possibly repeated)
from P.
Zero selections are denoted by λ.

For example, LC* is the set of all
words composed of lower-case
letters, of any length (including
the zero length word, λ).

Precisely stated, a string s ∈ P * if
and only if s can be broken into
zero or more pieces: s = s1 s2 ... sn
so that each si ∈ P (n ≥ 0, 1 ≤ i ≤ n).

We allow n = 0, so λ is always in P.

71CS 536 Fall 2012©

Definition of Regular
Expressions

Using catenations, alternation
and Kleene closure, we can
define regular expressions as
follows:
• ∅ is a regular expression denoting

the empty set (the set containing
no strings). ∅ is rarely used, but is
included for completeness.

• λ is a regular expression denoting
the set that contains only the
empty string. This set is not the
same as the empty set, because it
contains one element.

• A string s is a regular expression
denoting a set containing the
single string s.

72CS 536 Fall 2012©

• If A and B are regular expressions,
then A | B, A B, and A* are also
regular expressions, denoting the
alternation, catenation, and Kleene
closure of the corresponding
regular sets.

Each regular expression
denotes a set of strings (a
regular set). Any finite set of
strings can be represented by a
regular expression of the form
(s1 | s2 | … | sk). Thus the
reserved words of ANSI C can
be defined as
(auto | break | case | …).

73CS 536 Fall 2012©

The following additional
operations useful. They are not
strictly necessary, because their
effect can be obtained using
alternation, catenation, Kleene
closure:

• P+ denotes all strings consisting of
one or more strings in P catenated
together:
P* = (P+| λ) and P+ = P P*.
For example, (0 | 1)+ is the set of
all strings containing one or more
bits.

• If A is a set of characters, Not(A)
denotes (Σ − A); that is, all
characters in Σ not included in A.
Since Not(A) can never be larger
than Σ and Σ is finite, Not(A) must
also be finite, and is therefore
regular. Not(A) does not contain λ
since λ is not a character (it is a
zero-length string).

74CS 536 Fall 2012©

For example, Not(Eol) is the set of
all characters excluding Eol (the
end of line character, '\n' in Java or
C).

• It is possible to extend Not to
strings, rather than just Σ. That is,
if S is a set of strings, we define S
to be
(Σ* − S); the set of all strings except
those in S. Though S is usually
infinite, it is also regular if S is.

• If k is a constant, the set Ak

represents all strings formed by
catenating k (possibly different)
strings from A.
That is, Ak = (A A A …) (k copies).
Thus (0 | 1)32 is the set of all bit
strings exactly 32 bits long.

75CS 536 Fall 2012©

Examples
Let D be the ten single digits
and let L be the set of all 52
letters. Then
• A Java or C++ single-line comment

that begins with // and ends with
Eol can be defined as:

Comment = // Not(Eol)* Eol

• A fixed decimal literal (e.g.,
12.345) can be defined as:

Lit = D+. D+

•An optionally signed integer literal
can be defined as:

IntLiteral = ('+' | − | λ) D+

(Why the quotes on the plus?)

76CS 536 Fall 2012©

• A comment delimited by ##
markers, which allows single #’s
within the comment body:

Comment2 =
((# | λ) Not(#))*

All finite sets and many infinite sets
are regular. But not all infinite sets
are regular. Consider the set of
balanced brackets of the form
[[[…]]].

This set is defined formally as
{ [m]m | m ≥ 1 }.
This set is known not to be regular.
Any regular expression that tries to
define it either does not get all
balanced nestings or it includes
extra, unwanted strings.

77CS 536 Fall 2012©

Finite Automata and Scanners
A finite automaton (FA) can be
used to recognize the tokens
specified by a regular
expression. FAs are simple,
idealized computers that
recognize strings belonging to
regular sets. An FA consists of:
• A finite set of states
• A set of transitions (or moves) from

one state to another, labeled with
characters in Σ

• A special state called the start state
• A subset of the states called the

accepting, or final, states

78CS 536 Fall 2012©

These four components of a
finite automaton are often
represented graphically:

Finite automata (the plural of
automaton is automata) are
represented graphically using
transition diagrams. We start at
the start state. If the next input
character matches the label on

eof

is a transition

is the start state

is an accepting state

is a state

79CS 536 Fall 2012©

a transition from the current
state, we go to the state it
points to. If no move is
possible, we stop. If we finish
in an accepting state, the
sequence of characters read
forms a valid token; otherwise,
we have not seen a valid token.

In this diagram, the valid
tokens are the strings
described by the regular
expression (a b (c)+)+.

a b c

c

a

80CS 536 Fall 2012©

Deterministic Finite Automata
As an abbreviation, a transition
may be labeled with more than
one character (for example,
Not(c)). The transition may be
taken if the current input
character matches any of the
characters labeling the transition.
If an FA always has a unique
transition (for a given state and
character), the FA is deterministic
(that is, a deterministic FA, or
DFA). Deterministic finite
automata are easy to program
and often drive a scanner.
If there are transitions to more
than one state for some character,
then the FA is nondeterministic
(that is, an NFA).

81CS 536 Fall 2012©

A DFA is conveniently represented
in a computer by a transition
table. A transition table, T, is a
two dimensional array indexed by
a DFA state and a vocabulary
symbol.
Table entries are either a DFA
state or an error flag (often
represented as a blank table
entry). If we are in state s, and
read character c, then T[s,c] will
be the next state we visit, or T[s,c]
will contain an error marker
indicating that c cannot extend
the current token. For example,
the regular expression

// Not(Eol)* Eol

which defines a Java or C++
single-line comment, might be
translated into

82CS 536 Fall 2012©

The corresponding transition
table is:

A complete transition table
contains one column for each
character. To save space, table
compression may be used. Only
non-error entries are explicitly
represented in the table, using
hashing, indirection or linked
structures.

State Character
/ Eol a b …

1 2
2 3
3 3 4 3 3 3
4

eof

Eol/ /

Not(Eol)

1 2 3 4

83CS 536 Fall 2012©

All regular expressions can be
translated into DFAs that accept
(as valid tokens) the strings
defined by the regular
expressions. This translation can
be done manually by a
programmer or automatically
using a scanner generator.
A DFA can be coded in:
• Table-driven form
• Explicit control form
In the table-driven form, the
transition table that defines a
DFA’s actions is explicitly
represented in a run-time table
that is “interpreted” by a driver
program.
In the direct control form, the
transition table that defines a
DFA’s actions appears implicitly as
the control logic of the program.

84CS 536 Fall 2012©

For example, suppose
CurrentChar is the current input
character. End of file is
represented by a special character
value, eof. Using the DFA for the
Java comments shown earlier, a
table-driven scanner is:
State = StartState
while (true){

if (CurrentChar == eof)
break

NextState =
T[State][CurrentChar]

 if(NextState == error)
break

State = NextState
read(CurrentChar)

}
if (State in AcceptingStates)

// Process valid token
else // Signal a lexical error

85CS 536 Fall 2012©

This form of scanner is produced
by a scanner generator; it is
definition-independent. The
scanner is a driver that can scan
any token if T contains the
appropriate transition table.
Here is an explicit-control scanner
for the same comment definition:
if (CurrentChar == '/'){

read(CurrentChar)
if (CurrentChar == '/')

repeat
read(CurrentChar)

until (CurrentChar in
{eol, eof})

else //Signal lexical error
else // Signal lexical error
if (CurrentChar == eol)
// Process valid token

else //Signal lexical error

86CS 536 Fall 2012©

The token being scanned is
“hardwired” into the logic of the
code. The scanner is usually easy
to read and often is more
efficient, but is specific to a single
token definition.

87CS 536 Fall 2012©

More Examples
• A FORTRAN-like real literal (which

requires digits on either or both
sides of a decimal point, or just a
string of digits) can be defined as

RealLit = (D+ (λ | .)) | (D* . D+)

This corresponds to the DFA

. D

DD

D .

88CS 536 Fall 2012©

• An identifier consisting of letters,
digits, and underscores, which
begins with a letter and allows no
adjacent or trailing underscores,
may be defined as

ID = L (L | D)* (_ (L | D)+)*

This definition includes identifiers
like sum or unit_cost, but
excludes _one and two_ and
grand___total. The DFA is:

L | D

L

L | D

_

