
179CS 536 Fall 2012©

Properties of Regular
Expressions and Finite
Automata
• Some token patterns can’t be defined

as regular expressions or finite
automata. Consider the set of
balanced brackets of the form [[[…]]].
This set is defined formally as
{ [m]m | m ≥ 1 }.
This set is not regular.
No finite automaton that recognizes
exactly this set can exist.
Why? Consider the inputs [, [[, [[[, ...
For two different counts (call them i
and j) [i and [j must reach the same
state of a given FA! (Why?)
Once that happens, we know that if [i]i

is accepted (as it should be), the [j]i

will also be accepted (and that should
not happen).

180CS 536 Fall 2012©

• R = V* - R is regular if R is.
Why?
Build a finite automaton for R. Be
careful to include transitions to an
“error state” sE for illegal characters.
Now invert final and non-final states.
What was previously accepted is now
rejected, and what was rejected is
now accepted. That is, R is accepted
by the modified automaton.

• Not all subsets of a regular set are
themselves regular. The regular
expression [+]+ has a subset that isn’t
regular. (What is that subset?)

181CS 536 Fall 2012©

• Let R be a set of strings. Define Rrev as
all strings in R, in reversed (backward)
character order.
Thus if R = {abc, def}
then Rrev = {cba, fed}.
If R is regular, then Rrev is too.
Why? Build a finite automaton for R.
Make sure the automaton has only one
final state. Now reverse the direction
of all transitions, and interchange the
start and final states. What does the
modified automation accept?

182CS 536 Fall 2012©

• If R1 and R2 are both regular, then
R1 ∩ R2 is also regular. We can show
this two different ways:

1. Build two finite automata, one
for R1 and one for R2. Pair
together states of the two
automata to match R1 and R2
simultaneously. The paired-state
automaton accepts only if both
R1 and R2 would, so
R1 ∩ R2 is matched.

2. We can use the fact that R1 ∩ R2

is = We already know
union and complementation are
regular.

R1 R2∪

183CS 536 Fall 2012©

Reading Assignment
• Read Chapter 4 of

Crafting a Compiler

184CS 536 Fall 2012©

Context Free Grammars
A context-free grammar (CFG) is
defined as:
• A finite terminal set Vt;

these are the tokens produced by
the scanner.

• A set of intermediate symbols,
called non-terminals, Vn.

• A start symbol, a designated non-
terminal, that starts all derivations.

• A set of productions (sometimes
called rewriting rules) of the form

A → X1 ... Xm
X1 to Xm may be any
combination of terminals and
non-terminals.

If m =0 we have A → λ
which is a valid production.

185CS 536 Fall 2012©

Example
Prog → { Stmts }
Stmts →Stmts ; Stmt
Stmts →Stmt
Stmt →id = Expr
Expr →id
Expr →Expr + id

186CS 536 Fall 2012©

Often more than one production
shares the same left-hand side.
Rather than repeat the left hand
side, an “or notation” is used:

Prog → { Stmts }
Stmts →Stmts ; Stmt

| Stmt
Stmt →id = Expr
Expr →id

| Expr + id

187CS 536 Fall 2012©

Derivations
Starting with the start symbol,
non-terminals are rewritten using
productions until only terminals
remain.
Any terminal sequence that can
be generated in this manner is
syntactically valid.
If a terminal sequence can’t be
generated using the productions
of the grammar it is invalid (has
syntax errors).
The set of strings derivable from
the start symbol is the language
of the grammar (sometimes
denoted L(G)).

188CS 536 Fall 2012©

For example, starting at Prog we
generate a terminal sequence, by
repeatedly applying productions:
Prog
{ Stmts }
{ Stmts ; Stmt }
{ Stmt ; Stmt }
{ id = Expr ; Stmt }
{ id = id ; Stmt }
{ id = id ; id = Expr }
{ id = id ; id = Expr + id}
{ id = id ; id = id + id}

189CS 536 Fall 2012©

Parse Trees
To illustrate a derivation, we can
draw a derivation tree (also called
a parse tree):

Prog

{ Stmts }

 Stmts ; Stmt

 Stmt

 id = Expr

 id

 id = Expr

 Expr + id

 id

190CS 536 Fall 2012©

An abstract syntax tree (AST)
shows essential structure but
eliminates unnecessary delimiters
and intermediate symbols:

Prog

Stmts

 Stmts =

=

 id id

 id +

 id id

191CS 536 Fall 2012©

If A → γ is a production then
αAβ ⇒ αγβ

where ⇒ denotes a one step
derivation (using production
A → γ).

We extend ⇒ to ⇒+ (derives in
one or more steps), and ⇒*

(derives in zero or more steps).
We can show our earlier
derivation as
Prog ⇒
{ Stmts } ⇒
{ Stmts ; Stmt } ⇒
{ Stmt ; Stmt } ⇒
{ id = Expr ; Stmt } ⇒
{ id = id ; Stmt } ⇒
{ id = id ; id = Expr } ⇒
{ id = id ; id = Expr + id} ⇒
{ id = id ; id = id + id}

Prog ⇒+ { id = id ; id = id + id}

192CS 536 Fall 2012©

When deriving a token sequence,
if more than one non-terminal is
present, we have a choice of
which to expand next.
We must specify, at each step,
which non-terminal is expanded,
and what production is applied.
For simplicity we adopt a
convention on what non-terminal
is expanded at each step.
We can choose the leftmost
possible non-terminal at each
step.
A derivation that follows this rule
is a leftmost derivation.
If we know a derivation is
leftmost, we need only specify
what productions are used; the
choice of non-terminal is always
fixed.

193CS 536 Fall 2012©

To denote derivations that are
leftmost,
we use ⇒L, ⇒+

L , and ⇒*
L

The production sequence
discovered by a large class of
parsers (the top-down parsers) is
a leftmost derivation, hence these
parsers produce a leftmost parse.
Prog ⇒L

{ Stmts } ⇒L

{ Stmts ; Stmt } ⇒L

{ Stmt ; Stmt } ⇒L

{ id = Expr ; Stmt } ⇒L

{ id = id ; Stmt } ⇒L

{ id = id ; id = Expr } ⇒L

{ id = id ; id = Expr + id} ⇒L

{ id = id ; id = id + id}

Prog ⇒L
+ { id = id ; id = id + id}

194CS 536 Fall 2012©

Rightmost Derivations
A rightmost derivation is an
alternative to a leftmost
derivation. Now the rightmost
non-terminal is always expanded.
This derivation sequence may
seem less intuitive given our
normal left-to-right bias, but it
corresponds to an important class
of parsers (the bottom-up parsers,
including CUP).
As a bottom-up parser discovers
the productions used to derive a
token sequence, it discovers a
rightmost derivation, but in
reverse order.
The last production applied in a
rightmost derivation is the first
that is discovered. The first
production used, involving the
start symbol, is discovered last.

195CS 536 Fall 2012©

The sequence of productions
recognized by a bottom-up parser
is a rightmost parse.
It is the exact reverse of the
production sequence that
represents a rightmost derivation.
For rightmost derivations, we use
the notation ⇒R, ⇒+

R , and ⇒*
R

Prog ⇒R

{ Stmts } ⇒R

{ Stmts ; Stmt } ⇒R

{ Stmts ; id = Expr } ⇒R

{ Stmts ; id = Expr + id } ⇒R

{ Stmts ; id = id + id } ⇒R

{ Stmt ; id = id + id } ⇒R

{ id = Expr ; id = id + id } ⇒R

{ id = id ; id = id + id}

Prog ⇒+ { id = id ; id = id + id}

196CS 536 Fall 2012©

You can derive the same set of
tokens using leftmost and
rightmost derivations; the only
difference is the order in which
productions are used.

197CS 536 Fall 2012©

Ambiguous Grammars
Some grammars allow more than
one parse tree for the same token
sequence. Such grammars are
ambiguous. Because compilers
use syntactic structure to drive
translation, ambiguity is
undesirable—it may lead to an
unexpected translation.
Consider
E → E - E

| id
When parsing the input a-b-c
(where a, b and c are scanned as
identifiers) we can build the
following two parse trees:

198CS 536 Fall 2012©

The effect is to parse a-b-c as
either (a-b)-c or a-(b-c). These two
groupings are certainly not
equivalent.
Ambiguous grammars are usually
voided in building compilers; the
tools we use, like Yacc and CUP,
strongly prefer unambiguous
grammars.
To correct this ambiguity, we use
E → E - id

| id

E
E - E

E - E

id id id

E
E - E

E - E

id id id

199CS 536 Fall 2012©

Now a-b-c can only be parsed as:

E
E -

E -

id id id

200CS 536 Fall 2012©

Operator Precedence
Most programming languages
have operator precedence rules
that state the order in which
operators are applied (in the
absence of explicit parentheses).
Thus in C and Java and CSX,
a+b*c means compute b*c, then
add in a.
These operators precedence rules
can be incorporated directly into a
CFG.
Consider
E → E + T

| T
T → T * P

| P
P → id

| (E)

201CS 536 Fall 2012©

Does a+b*c mean (a+b)*c or
a+(b*c)?
The grammar tells us! Look at the
derivation tree:

The other grouping can’t be
obtained unless explicit
parentheses are used.
(Why?)

E

E + T

T T * P

P P

id id id

202CS 536 Fall 2012©

Java CUP
Java CUP is a parser-generation
tool, similar to Yacc.
CUP builds a Java parser for
LALR(1) grammars from
production rules and associated
Java code fragments.
When a particular production is
recognized, its associated code
fragment is executed (typically to
build an AST).
CUP generates a Java source file
parser.java. It contains a class
parser, with a method
Symbol parse()

The Symbol returned by the parser
is associated with the grammar’s
start symbol and contains the AST
for the whole source program.

203CS 536 Fall 2012©

The file sym.java is also built for
use with a JLex-built scanner (so
that both scanner and parser use
the same token codes).
If an unrecovered syntax error
occurs, Exception() is thrown by
the parser.
CUP and Yacc accept exactly the
same class of grammars—all LL(1)
grammars, plus many useful non-
LL(1) grammars.
CUP is called as
java java_cup.Main < file.cup

204CS 536 Fall 2012©

Java CUP Specifications
Java CUP specifications are of the
form:
• Package and import specifications
• User code additions
• Terminal and non-terminal

declarations
• A context-free grammar,

augmented with Java code
fragments

Package and Import Specifications
You define a package name as:
package name ;

You add imports to be used as:
import java_cup.runtime.*;

205CS 536 Fall 2012©

User Code Additions
You may define Java code to be
included within the generated
parser:
action code {: /*java code */ :}
This code is placed within the
generated action class (which
holds user-specified production
actions).
parser code {: /*java code */ :}
This code is placed within the
generated parser class .
init with{: /*java code */ :}
This code is used to initialize the
generated parser.
scan with{: /*java code */ :}
This code is used to tell the
generated parser how to get
tokens from the scanner.

206CS 536 Fall 2012©

Terminal and Non-terminal
Declarations

You define terminal symbols you
will use as:
terminal classname name1, name2, ...

classname is a class used by the
scanner for tokens (CSXToken,
CSXIdentifierToken, etc.)

You define non-terminal symbols
you will use as:
non terminal classname name1, name2, ...

classname is the class for the
AST node associated with the
non-terminal (stmtNode,
exprNode, etc.)

207CS 536 Fall 2012©

Production Rules
Production rules are of the form
name ::= name1 name2 ... action ;

or
name ::= name1 name2 ...
action1

| name3 name4 ... action2
| ...

;

Names are the names of terminals
or non-terminals, as declared
earlier.
Actions are Java code fragments,
of the form
{: /*java code */ :}

The Java object assocated with a
symbol (a token or AST node) may
be named by adding a :id suffix
to a terminal or non-terminal in a
rule.

208CS 536 Fall 2012©

RESULT names the left-hand side
non-terminal.
The Java classes of the symbols
are defined in the terminal and
non-terminal declaration sections.
For example,
prog ::= LBRACE:l stmts:s RBRACE

{: RESULT =
new csxLiteNode(s,

l.linenum,l.colnum); :}

This corresponds to the production
prog → { stmts }
The left brace is named l; the
stmts non-terminal is called s.
In the action code, a new
CSXLiteNode is created and
assigned to prog. It is
constructed from the AST node
associated with s. Its line and
column numbers are those given
to the left brace, l (by the scanner).

209CS 536 Fall 2012©

To tell CUP what non-terminal to
use as the start symbol (prog in
our example), we use the
directive:
start with prog;

