OperaTor Precedence

Most programming languages
have operator precedence rules
that state the order in which
operators are applied (in the
absence of explicit parentheses).
Thus in C and Java and CSX,
a+b*c means compute b*¢, then
add in a.

These operators precedence rules
can be incorporated directly into a
CFC.

Consider
E—-E+T
| T
T>T*P
| P
P—id
| (E)

CS 536 Fall 2012° 200

Does a+b*c mean (a+b) *c Or
a+(b*c)?

The grammar tells us! Look at the
derivation tree:

The other grouping can’t be
obtained unless explicit
parentheses are used.

(Why?)

CS 536 Fall 2012° 201

Java CUP

Java CUP is a parser-generation
tool, similar to Yacc.

CUP builds a Java parser for
LALR(T) grammars from
oroduction rules and associated
Java code fragments.

When a particular production is
recognized, its associated code
fragment is executed (typically to
build an AST).

CUP generates a Java source file
parser.java. It contains a class
parser, With a method

Symbol parse()

The symbol returned by the parser
is associated with the grammar’s
start symbol and contains the AST
for the whole source program.

CS 536 Fall 2012° 202

The file sym.java is a

so built for

use with a JLex-built scanner (so

that both scanner anc

parser use

the same token codes).

If an unrecovered syntax error
OCCUrs, Exception() is thrown by

the parser.

CUP and Yacc accept exactly the
same class of grammars—all LL(1)
grammars, plus many useful non-

LL(1) grammars.
CUP is called as

java java_cup.Main

< file.cup

CS 536 Fall 2012°

203

Java CUP Specifications

Java CUP specifications are of the
form:

. Package and import specifications
. User code additions

. Terminal and non-terminal
declarations

. A context-free grammar,
augmented with Java code
fragments

Package and Import SpecificaTions

You define a package name as:
package name ;

You add imports to be used as:
import java_cup.runtime.?*;

5536 Fall 2012 204

User Code AddiTions

You may define Java code to be
included within the generated
parser:

action code {: /*java code */ :}
This code is placed within the
generated action class (which
holds user-specified production
actions).

parser code {: /*java code */ :}

This code is placed within the
generated parser class .

init with{: /*java code */ :}
This code is used to initialize the
generated parser.

scan with{: /*java code */ :}
This code is used to tell the
generated parser how to get
tokens from the scanner.

CS 536 Fall 2012° 205

Terminal ANd NoN-Terminal
DeclaraTions

You define terminal symbols you
will use as:

terminal classname name,, name,,

classname is a class used by the
scanner for tokens (cSXToken,
CSXIdentifierToken, etc.)

You define non-terminal symbols
you will use as:

non terminal classname name;, name,, ...

classname is the class for the
AST node associated with the
non-terminal (stmtNode,
exprNode, etc.)

CS 536 Fall 2012°

206

Production Rules

Production rules are of the form
name ::= name,; name, ... action ;

or

name ::= name; name, ...
action,
| name; name, ... action,

4

Names are the names of terminals
or non-terminals, as declared
earlier.

Actions are Java code fragments,
of the form

{: /*java code */ :}

The Java object assocated with a

symbol (a token or AST node) may
be named by adding a :id suffix

to a terminal or non-terminal in a
rule.

CS 536 Fall 2012°

207

RESULT names the left-hand side
non-terminal.

The Java classes of the symbols
are defined in the terminal and
non-terminal declaration sections.

For example,

prog ::= LBRACE:1l stmts:s RBRACE
{: RESULT =

new csxLiteNode(s,
l.linenum,l.colnum); :}

This corresponds to the production
prog — { stmts }

The left brace is named 1; the
stmts non-terminal is called s.

In the action code, a new
CSXLiteNode is created and
assigned to prog. It is
constructed from the AST node
associated with s. Its line and
column numbers are those given
to the left brace, 1 (by the scanner).

CS 536 Fall 2012° 208

To tell CUP what non-terminal to
use as the start symbol (prog in
our example), we use the
directive:

start with prog;

5536 Fall 201 209

Example

Let’s look at the CUP specification
for CSX-lite. Recall its CFG is

program —{ stmts }
stmts — stmt stmts

| A
stmt— id = expr ;

| if (expr) stmt
expr — expr + id

| expr - id

| id

CS 536 Fall 2012°

210

The corresponding CUP
specification is:
/***

This Is A Java CUP Specification For
CSX-lite, a Small Subset of The CSX
Language, Used In Csb536

***/

/* Preliminaries to set up and use the
scanner. */

import java_cup.runtime.*;
parser code ({:

public void syntax error
(Symbol cur_ token) {

report_ error (
“WCSX syntax error at line “+
String.valueOf (((CSXToken)
cur_ token.value) .linenum),

null);}
)

init with {: 2}
scan with {:
return Scanner.next token():;

$};

CS 536 Fall 2012°

211

/* Terminals (tokens returned by the
scanner). */

terminal CSXIdentifierToken IDENTIFIER;

terminal CSXToken SEMI, LPAREN, RPAREN,
ASG, LBRACE, RBRACE;

terminal CSXToken PLUS, MINUS, rw IF;

/* Non terminals */
non terminal csxLiteNode prog;
non terminal stmtsNode stmts;

non terminal stmtNode stmt;
non terminal exprNode exp;
non terminal nameNode ident;

start with prog;

prog: := LBRACE:1l stmts:s RBRACE
{: RESULT=

new csxLiteNode (s,
l.linenum,l.colnum); :}

we

stmts::= stmt:sl stmts:s2
{: RESULT=

new stmtsNode(sl, s2,
sl.linenum,sl.colnum):;

o0
ot

CS 536 Fall 2012°

212

{: RESULT= stmtsNode.NULL; :}

’

stmt::= ident:id ASG exp:e SEMI
{: RESULT=
new asgNode(id, e,
id.linenum, id.colnum) ;

(1)
(-

| rw_IF:i LPAREN exp:e RPAREN stmt:s

{: RESULT=new ifThenNode(e, s,
stmtNode . NULL,

i.linenum,i.colnum); :}

r
exp::=
exp:leftval PLUS:op ident:rightval

{: RESULT=new binaryOpNode(leftwval,
sym.PLUS, rightval,
op.linenum,op.colnum); :}

| exp:leftval MINUS:op ident:rightval

{: RESULT=new binaryOpNode(leftwval,
sym.MINUS, rightval,

op.linenum,op.colnum); :}
| ident:i
{: RESULT = 1i;

o0
Sod

°
1 4

CS 536 Fall 2012°

213

ident::= IDENTIFIER:1i
{: RESULT = new nameNode (
new identNode(i.identifierText,
i.linenum,i.colnum),
exprNode .NULL,
i.linenum,i.colnum); :}

we

€5 536 Fall 2012° 214

Let’s parse
{a=Db; }

First, a is parsed using
ident::= IDENTIFIER:1i
{: RESULT = new nameNode (
new identNode(i.identifierText,
i.linenum,i.colnum),
exprNode .NULL,

i.linenum,i.colnum); :}

We build
nameNode
iIdentNode nullExprNode

d

CS 536 Fall 2012° 215

Next, b is parsed using
ident::= IDENTIFIER:1i
{: RESULT = new nameNode (
new identNode(i.identifierText,
i.linenum,i.colnum),
exprNode .NULL,

i.linenum,i.colnum); :}

We build
nameNode
identNode nullExprNode

b

CS 536 Fall 2012° 216

Then b’s subtree is recognized as
an exp:

| ident:i

{: RESULT = i; :}

Now the assignment statement is
recoghized:
stmt::= ident:id ASG exp:e SEMI
{: RESULT=
new asgNode(id, e,
id.linenum, id.colnum) ;

2}
We build
| asgNode
| nameNode | | nameNode |

identNode inuIIExprNode” identNode | ;nuIIExprNodel

CS 536 Fall 2012° 017

The stmts — A production is
matched (indicating that there are
no more statements in the
program).

CUP matches

stmts::=
{: RESULT= stmtsNode.NULL; :}

and we build

nullStmtsNode

Next,
stmts — stimt stimts
IS matched using

stmts::= stmt:sl stmts:s2
{: RESULT=

new stmtsNode(sl,s2,
sl.linenum,sl.colnum);

CS 536 Fall 2012° 218

This builds

stmtsNode |

1

| asgNode |nuHStnﬂsNode|
| nameNode | | nameNode |

identNode ; nuHExprNodell identNode | i nullExprNode]

As the last step of the parse, the
parser matches

program —» { stmts }
using the CUP rule

prog: := LBRACE:1l stmts:s RBRACE
{: RESULT=

new csxLiteNode (s,
l.linenum,l.colnum); :}

CS 536 Fall 2012° 219

The final AST reurned by the
parser is

| csxLiteNode |

stmtsNode |

5 N

| asgNode |nuIIStmtsNode|
| nameNode | nameNode |

| identNode | | nullExprNode]| identNode | [nullExprNode

N | I

CS 536 Fall 2012°

220

ErRRORS IN CONTEXT-FREE
GRAMMARS

Context-free grammars can
contain errors, just as programs
do. Some errors are easy to detect
and fix; others are more subtle.

In context-free grammars we start
with the start symbol, and apply
productions until a terminal string
is produced.

Some context-free grammars may
contain useless non-terminals.

Non-terminals that are
unreachable (from the start
symbol) or that derive no terminal
string are considered useless.

Useless non-terminals (and
productions that involve them)
can be safely removed from a

5536 Fall 2012 991

grammar without changing the
language defined by the grammar.

A grammar containing useless
non-terminals is said to be non-
reduced.

After useless non-terminals are
removed, the grammar is reduced.

Consider
S—>AB
| X
B—b
A—-aA
C—od

Which non-terminals are
unreachable? Which derive no
terminal string?

5536 Fall 2012 999

