
210CS 536 Fall 2012©

Example
Let’s look at the CUP specification
for CSX-lite. Recall its CFG is

program → { stmts }
stmts → stmt stmts

| λ
stmt → id = expr ;

| if (expr) stmt
expr → expr + id

| expr - id
| id

211CS 536 Fall 2012©

The corresponding CUP
specification is:
/***
This Is A Java CUP Specification For
CSX-lite, a Small Subset of The CSX
Language, Used In Cs536
 ***/

/* Preliminaries to set up and use the
scanner. */

import java_cup.runtime.*;
parser code {:
 public void syntax_error

(Symbol cur_token){
 report_error(

“CSX syntax error at line “+
String.valueOf(((CSXToken)

cur_token.value).linenum),
null);}

:};

init with {: :};
scan with {:

return Scanner.next_token();
:};

212CS 536 Fall 2012©

/* Terminals (tokens returned by the
scanner). */
terminal CSXIdentifierToken IDENTIFIER;
terminal CSXToken SEMI, LPAREN, RPAREN,
ASG, LBRACE, RBRACE;
terminal CSXToken PLUS, MINUS, rw_IF;

/* Non terminals */
non terminal csxLiteNode prog;
non terminal stmtsNode stmts;
non terminal stmtNode stmt;
non terminal exprNode exp;
non terminal nameNode ident;

start with prog;

prog::= LBRACE:l stmts:s RBRACE
 {: RESULT=

new csxLiteNode(s,
l.linenum,l.colnum); :}

;

stmts::= stmt:s1 stmts:s2
 {: RESULT=

new stmtsNode(s1,s2,
s1.linenum,s1.colnum);

 :}

213CS 536 Fall 2012©

|
 {: RESULT= stmtsNode.NULL; :}
;
stmt::= ident:id ASG exp:e SEMI
 {: RESULT=

new asgNode(id,e,
id.linenum,id.colnum);

 :}

| rw_IF:i LPAREN exp:e RPAREN stmt:s
 {: RESULT=new ifThenNode(e,s,

 stmtNode.NULL,
i.linenum,i.colnum); :}

;
exp::=
exp:leftval PLUS:op ident:rightval

 {: RESULT=new binaryOpNode(leftval,
sym.PLUS, rightval,
op.linenum,op.colnum); :}

| exp:leftval MINUS:op ident:rightval
 {: RESULT=new binaryOpNode(leftval,

sym.MINUS,rightval,
op.linenum,op.colnum); :}

| ident:i
 {: RESULT = i; :}
;

214CS 536 Fall 2012©

ident::= IDENTIFIER:i
 {: RESULT = new nameNode(

new identNode(i.identifierText,
 i.linenum,i.colnum),

exprNode.NULL,
i.linenum,i.colnum); :}

;

215CS 536 Fall 2012©

Let’s parse
{ a = b ; }

First, a is parsed using
ident::= IDENTIFIER:i

 {: RESULT = new nameNode(

new identNode(i.identifierText,

 i.linenum,i.colnum),

exprNode.NULL,

i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
a

216CS 536 Fall 2012©

Next, b is parsed using
ident::= IDENTIFIER:i

 {: RESULT = new nameNode(

new identNode(i.identifierText,

 i.linenum,i.colnum),

exprNode.NULL,

i.linenum,i.colnum); :}

We build

nameNode

identNode nullExprNode
b

217CS 536 Fall 2012©

Then b’s subtree is recognized as
an exp:
| ident:i
 {: RESULT = i; :}

Now the assignment statement is
recognized:
stmt::= ident:id ASG exp:e SEMI

 {: RESULT=

new asgNode(id,e,

id.linenum,id.colnum);

 :}

We build

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

218CS 536 Fall 2012©

The stmts → λ production is
matched (indicating that there are
no more statements in the
program).
CUP matches
stmts::=

 {: RESULT= stmtsNode.NULL; :}

and we build

Next,
stmts → stmt stmts
is matched using
stmts::= stmt:s1 stmts:s2

 {: RESULT=

new stmtsNode(s1,s2,
s1.linenum,s1.colnum);

 :}

nullStmtsNode

219CS 536 Fall 2012©

This builds

As the last step of the parse, the
parser matches
program → { stmts }
using the CUP rule
prog::= LBRACE:l stmts:s RBRACE

 {: RESULT=

new csxLiteNode(s,
l.linenum,l.colnum); :}

;

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

stmtsNode

nullStmtsNode

220CS 536 Fall 2012©

The final AST reurned by the
parser is

nameNode

identNode nullExprNode
a

nameNode

identNode nullExprNode
b

asgNode

stmtsNode

nullStmtsNode

csxLiteNode

221CS 536 Fall 2012©

Errors in Context-Free
Grammars

Context-free grammars can
contain errors, just as programs
do. Some errors are easy to detect
and fix; others are more subtle.
In context-free grammars we start
with the start symbol, and apply
productions until a terminal string
is produced.
Some context-free grammars may
contain useless non-terminals.
Non-terminals that are
unreachable (from the start
symbol) or that derive no terminal
string are considered useless.
Useless non-terminals (and
productions that involve them)
can be safely removed from a

222CS 536 Fall 2012©

grammar without changing the
language defined by the grammar.
A grammar containing useless
non-terminals is said to be non-
reduced.
After useless non-terminals are
removed, the grammar is reduced.
Consider
S → A B

| x
B → b
A → a A
C → d

Which non-terminals are
unreachable? Which derive no
terminal string?

223CS 536 Fall 2012©

Finding Useless Non-terminals
To find non-terminals that can
derive one or more terminal
strings, we’ll use a marking
algorithm.
We iteratively mark terminals that
can derive a string of terminals,
until no more non-terminals can
be marked. Unmarked non-
terminals are useless.
(1) Mark all terminal symbols
(2) Repeat

If all symbols on the
righthand side of a
production are marked

Then mark the lefthand side
Until no more non-terminals

can be marked

224CS 536 Fall 2012©

We can use a similar marking
algorithm to determine which
non-terminals can be reached
from the start symbol:

(1) Mark the Start Symbol
(2) Repeat

If the lefthand side of a
production is marked

Then mark all non-terminals
in the righthand side

Until no more non-terminals
can be marked

225CS 536 Fall 2012©

λ Derivations
When parsing, we’ll sometimes
need to know which non-terminals
can derive λ. (λ is “invisible” and
hence tricky to parse).
We can use the following marking
algorithm to decide which non-
terminals derive λ
(1) For each production A → λ

mark A
(2) Repeat

If the entire righthand
side of a production
is marked

Then mark the lefthand side
Until no more non-terminals

can be marked

226CS 536 Fall 2012©

As an example consider
S → A B C
A → a
B → C D
D → d

| λ
C → c

| λ

227CS 536 Fall 2012©

Recall that compilers prefer an
unambiguous grammar because a
unique parse tree structure can be
guaranteed for all inputs.
Hence a unique translation,
guided by the parse tree
structure, will be obtained.
We would like an algorithm that
checks if a grammar is
ambiguous.
Unfortunately, it is undecidable
whether a given CFG is
ambiguous, so such an algorithm
is impossible to create.
Fortunately for certain grammar
classes, including those for which
we can generate parsers, we can
prove included grammars are
unambiguous.

228CS 536 Fall 2012©

Potentially, the most serious flaw
that a grammar might have is that
it generates the “wrong
language."
This is a subtle point as a
grammar serves as the definition
of a language.
For established languages (like C
or Java) there is usually a suite of
programs created to test and
validate new compilers. An
incorrect grammar will almost
certainly lead to incorrect
compilations of test programs,
which can be automatically
recognized.
For new languages, initial
implementors must thoroughly
test the parser to verify that
inputs are scanned and parsed as
expected.

229CS 536 Fall 2012©

Parsers and Recognizers
Given a sequence of tokens, we
can ask:
"Is this input syntactically valid?"
(Is it generable from the
grammar?).
A program that answers this
question is a recognizer.
Alternatively, we can ask:
"Is this input valid and, if it is,
what is its structure (parse tree)?"
A program that answers this more
general question is termed a
parser.
We plan to use language structure
to drive compilers, so we will be
especially interested in parsers.

230CS 536 Fall 2012©

Two general approaches to
parsing exist.
The first approach is top-down.
A parser is top-down if it
"discovers" the parse tree
corresponding to a token
sequence by starting at the top of
the tree (the start symbol), and
then expanding the tree (via
predictions) in a depth-first
manner.
Top-down parsing techniques are
predictive in nature because they
always predict the production that
is to be matched before matching
actually begins.

231CS 536 Fall 2012©

Consider
E → E + T | T
T → T * id | id

To parse id+id in a top-down
manner, a parser build a parse
tree in the following steps:

E E

E + T

E

E + T

T
E

E + T

T

id

E

E + T

T

id id

⇒ ⇒ ⇒

⇒

232CS 536 Fall 2012©

A wide variety of parsing
techniques take a different
approach.
They belong to the class of
bottom-up parsers.
As the name suggests, bottom-up
parsers discover the structure of a
parse tree by beginning at its
bottom (at the leaves of the tree
which are terminal symbols) and
determining the productions used
to generate the leaves.
Then the productions used to
generate the immediate parents
of the leaves are discovered.
The parser continues until it
reaches the production used to
expand the start symbol.
At this point the entire parse tree
has been determined.

233CS 536 Fall 2012©

A bottom-up parse of id1+id2
would follow the following steps:

E

E + T

T

id1 id2

⇒ ⇒

⇒

T

id1 T

id1

E

T

id2

