
229CS 536 Fall 2012©

Parsers and Recognizers
Given a sequence of tokens, we
can ask:
"Is this input syntactically valid?"
(Is it generable from the
grammar?).
A program that answers this
question is a recognizer.
Alternatively, we can ask:
"Is this input valid and, if it is,
what is its structure (parse tree)?"
A program that answers this more
general question is termed a
parser.
We plan to use language structure
to drive compilers, so we will be
especially interested in parsers.

230CS 536 Fall 2012©

Two general approaches to
parsing exist.
The first approach is top-down.
A parser is top-down if it
"discovers" the parse tree
corresponding to a token
sequence by starting at the top of
the tree (the start symbol), and
then expanding the tree (via
predictions) in a depth-first
manner.
Top-down parsing techniques are
predictive in nature because they
always predict the production that
is to be matched before matching
actually begins.

231CS 536 Fall 2012©

Consider
E → E + T | T
T → T * id | id

To parse id+id in a top-down
manner, a parser build a parse
tree in the following steps:

E E

E + T

E

E + T

T
E

E + T

T

id

E

E + T

T

id id

⇒ ⇒ ⇒

⇒

232CS 536 Fall 2012©

A wide variety of parsing
techniques take a different
approach.
They belong to the class of
bottom-up parsers.
As the name suggests, bottom-up
parsers discover the structure of a
parse tree by beginning at its
bottom (at the leaves of the tree
which are terminal symbols) and
determining the productions used
to generate the leaves.
Then the productions used to
generate the immediate parents
of the leaves are discovered.
The parser continues until it
reaches the production used to
expand the start symbol.
At this point the entire parse tree
has been determined.

233CS 536 Fall 2012©

A bottom-up parse of id1+id2
would follow the following steps:

E

E + T

T

id1 id2

⇒ ⇒

⇒

T

id1 T

id1

E

T

id2

234CS 536 Fall 2012©

A Simple Top-Down Parser
We’ll build a rudimentary top-
down parser that simply tries
each possible expansion of a non-
terminal, in order of production
definition.
If an expansion leads to a token
sequence that doesn’t match the
current token being parsed, we
backup and try the next possible
production choice.
We stop when all the input tokens
are correctly matched or when all
possible production choices have
been tried.

235CS 536 Fall 2012©

Example
Given the productions

S → a
| (S)

we try a, then (a), then ((a)), etc.

Let’s next try an additional
alternative:

S → a
| (S)
| (S]

Let’s try to parse a, then (a], then
((a]], etc.
We’ll count the number of
productions we try for each input.

236CS 536 Fall 2012©

• For input = a
We try S → a which works.
Matches needed = 1

• For input = (a]
We try S → a which fails.
We next try S → (S).
We expand the inner S three
different ways; all fail.
Finally, we try S → (S].
The inner S expands to a, which
works.
Total matches tried =
1 + (1+3)+(1+1)= 7.

• For input = ((a]]
We try S → a which fails.
We next try S → (S).
We match the inner S to (a] using 7
steps, then fail to match the last].
Finally, we try S → (S].
We match the inner S to (a] using 7

237CS 536 Fall 2012©

steps, then match the last].
Total matches tried =

1 + (1+7)+(1+7)= 17.
• For input = (((a]]]

We try S → a which fails.
We next try S → (S).
We match the inner S to ((a]] using
17 steps, then fail to match the last
].
Finally, we try S → (S].
We match the inner S to ((a]] using
17 steps, then match the last].
Total matches tried =

1 + (1+17) + (1+17) = 37.
Adding one extra (...] pair doubles
the number of matches we need to
do the parse.

In fact to parse (ia]i takes 5*2i-3
matches. This is exponential growth!

238CS 536 Fall 2012©

With a more effective dynamic
programming approach, in which
results of intermediate parsing steps
are cached, we can reduce the
number of matches needed to n3 for
an input with n tokens.
Is this acceptable?
No!
Typical source programs have at
least 1000 tokens, and 10003 = 109

is a lot of steps, even for a fast
modern computer.
The solution?
—Smarter selection in the choice of
productions we try.

239CS 536 Fall 2012©

Reading Assignment
Read Chapter 5 of
Crafting a Compiler, Second
Edition.

240CS 536 Fall 2012©

Prediction
We want to avoid trying
productions that can’t possibly
work.
For example, if the current token
to be parsed is an identifier, it is
useless to try a production that
begins with an integer literal.
Before we try a production, we’ll
consider the set of terminals it
might initially produce. If the
current token is in this set, we’ll
try the production.
If it isn’t, there is no way the
production being considered
could be part of the parse, so
we’ll ignore it.
A predict function tells us the set
of tokens that might be initially
generated from any production.

241CS 536 Fall 2012©

For A → X1...Xn, Predict(A →
X1...Xn) = Set of all initial (first)
tokens derivable from A → X1...Xn

= {a in Vt | A → X1...Xn ⇒* a...}

For example, given
Stmt → Label id = Expr ;

| Label if Expr then Stmt ;
| Label read (IdList) ;
| Label id (Args) ;

Label → intlit :
| λ

Production Predict Set

Stmt → Label id = Expr ; {id, intlit}

Stmt → Label if Expr then Stmt ; {if, intlit}

Stmt → Label read (IdList) ; {read, intlit}

Stmt → Label id (Args) ; {id, intlit}

242CS 536 Fall 2012©

We now will match a production p
only if the next unmatched token
is in p’s predict set. We’ll avoid
trying productions that clearly
won’t work, so parsing will be
faster.
But what is the predict set of a
λ-production?
It can’t be what’s generated by λ
(which is nothing!), so we’ll define
it as the tokens that can follow the
use of a λ-production.
That is, Predict(A → λ) = Follow(A)
where (by definition)

Follow(A) = {a in Vt | S ⇒+ ...Aa...}

In our example,
Follow(Label → λ) ={ id, if, read }
(since these terminals can
immediately follow uses of Label
in the given productions).

243CS 536 Fall 2012©

Now let’s parse
id (intlit) ;

Our start symbol is Stmt and the
initial token is id.
id can predict
Stmt → Label id = Expr ;
id then predicts Label → λ
The id is matched, but “(“ doesn’t
match “=” so we backup and try a
different production for Stmt.
id also predicts
Stmt → Label id (Args) ;

Again, Label → λ is predicted and
used, and the input tokens can
match the rest of the remaining
production.
We had only one misprediction,
which is better than before.
Now we’ll rewrite the productions
a bit to make predictions easier.

244CS 536 Fall 2012©

We remove the Label prefix from
all the statement productions
(now intlit won’t predict all four
productions).
We now have
Stmt → Label BasicStmt
BasicStmt → id = Expr ;

| if Expr then Stmt ;
| read (IdList) ;
| id (Args) ;

Label → intlit :
| λ

Now id predicts two different
BasicStmt productions. If we
rewrite these two productions
into
BasicStmt → id StmtSuffix
StmtSuffix → = Expr ;

| (Args) ;

245CS 536 Fall 2012©

we no longer have any doubt over
which production id predicts.
We now have

This grammar generates the same
statements as our original
grammar did, but now prediction
never fails!

Production Predict Set

Stmt → Label BasicStmt Not needed!

BasicStmt → id StmtSuffix {id}

BasicStmt → if Expr then Stmt ; {if}

BasicStmt → read (IdList) ; {read}

StmtSuffix → (Args) ; { (}

StmtSuffix → = Expr ; { = }

Label → intlit : {intlit}

Label → λ {if, id, read}

246CS 536 Fall 2012©

Whenever we must decide what
production to use, the predict sets
for productions with the same
lefthand side are always disjoint.
Any input token will predict a
unique production or no
production at all (indicating a
syntax error).
If we never mispredict a
production, we never backup, so
parsing will be fast and absolutely
accurate!

247CS 536 Fall 2012©

LL(1) Grammars
A context-free grammar whose
Predict sets are always disjoint
(for the same non-terminal) is said
to be LL(1).
LL(1) grammars are ideally suited
for top-down parsing because it is
always possible to correctly
predict the expansion of any non-
terminal. No backup is ever
needed.
Formally, let
First(X1...Xn) =

{a in Vt | A → X1...Xn ⇒* a...}

Follow(A) = {a in Vt | S ⇒+ ...Aa...}

248CS 536 Fall 2012©

Predict(A → X1...Xn) =

If X1...Xn⇒* λ
Then First(X1...Xn) U Follow(A)
Else First(X1...Xn)

If some CFG, G, has the property
that for all pairs of distinct
productions with the same
lefthand side,
A → X1...Xn and A → Y1...Ym
it is the case that
Predict(A → X1...Xn) ∩
Predict(A → Y1...Ym) = φ
then G is LL(1).
LL(1) grammars are easy to parse
in a top-down manner since
predictions are always correct.

249CS 536 Fall 2012©

Example

Since the predict sets of both B
productions and both D
productions are disjoint, this
grammar is LL(1).

Production Predict Set

S → A a {b,d,a}

A → B D {b, d, a}

B → b { b }

B → λ {d, a}

D → d { d }

D → λ { a }

250CS 536 Fall 2012©

Recursive Descent Parsers
An early implementation of top-
down (LL(1)) parsing was
recursive descent.
A parser was organized as a set of
parsing procedures, one for each
non-terminal. Each parsing
procedure was responsible for
parsing a sequence of tokens
derivable from its non-terminal.
For example, a parsing procedure,
A, when called, would call the
scanner and match a token
sequence derivable from A.
Starting with the start symbol’s
parsing procedure, we would then
match the entire input, which
must be derivable from the start
symbol.

251CS 536 Fall 2012©

This approach is called recursive
descent because the parsing
procedures were typically
recursive, and they descended
down the input’s parse tree (as
top-down parsers always do).

252CS 536 Fall 2012©

Building A Recursive Descent
Parser

We start with a procedure Match,
that matches the current input
token against a predicted token:
void Match(Terminal a) {

if (a == currentToken)

currentToken = Scanner();
else SyntaxErrror();}

To build a parsing procedure for a
non-terminal A, we look at all
productions with A on the
lefthand side:
A → X1...Xn | A → Y1...Ym | ...

We use predict sets to decide
which production to match (LL(1)
grammars always have disjoint
predict sets).
We match a production’s
righthand side by calling Match to

253CS 536 Fall 2012©

match terminals, and calling
parsing procedures to match non-
terminals.
The general form of a parsing
procedure for
A → X1...Xn | A → Y1...Ym | ... is
void A() {
if (currentToken in Predict(A→X1...Xn))

for(i=1;i<=n;i++)
if (X[i] is a terminal)

Match(X[i]);
else X[i]();

else
if (currentToken in Predict(A→Y1...Ym))

for(i=1;i<=m;i++)
if (Y[i] is a terminal)

Match(Y[i]);
else Y[i]();

else
 // Handle other A →... productions

else // No production predicted
SyntaxError();

}

254CS 536 Fall 2012©

Usually this general form isn’t
used.
Instead, each production is
“macro-expanded” into a
sequence of Match and parsing
procedure calls.

255CS 536 Fall 2012©

Example: CSX-Lite

Production Predict Set

Prog → { Stmts } Eof {

Stmts → Stmt Stmts id if

Stmts → λ }

Stmt → id = Expr ; id

Stmt → if (Expr) Stmt if

Expr → id Etail id

Etail → + Expr +

Etail → - Expr -

Etail → λ) ;

256CS 536 Fall 2012©

CSX-Lite Parsing Procedures
void Prog() {

Match("{");
Stmts();
Match("}");
Match(Eof);

}

void Stmts() {
if (currentToken == id ||

currentToken == if){
Stmt();
Stmts();

} else {
/* null */

}}

void Stmt() {
if (currentToken == id){

Match(id);
Match("=");
Expr();
Match(";");

} else {
Match(if);
Match("(");
Expr();
Match(")");
Stmt();

}}

257CS 536 Fall 2012©

void Expr() {
Match(id);
Etail();

}

void Etail() {
if (currentToken == "+") {

Match("+");
Expr();

} else if (currentToken == "-"){
 Match("-");
Expr();

} else {
/* null */

}}

258CS 536 Fall 2012©

Let’s use recursive descent to parse
{ a = b + c; } Eof
We start by calling Prog() since this
represents the start symbol.

Calls Pending Remaining Input

Prog() { a = b + c; } Eof

Match("{");
Stmts();
Match("}");
Match(Eof);

{ a = b + c; } Eof

Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

Stmt();
Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

Match(id);
Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

a = b + c; } Eof

259CS 536 Fall 2012©

Match("=");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 = b + c; } Eof

Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 b + c; } Eof

Match(id);
Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 b + c; } Eof

Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c; } Eof

Calls Pending Remaining Input

260CS 536 Fall 2012©

Match("+");
Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 + c; } Eof

Expr();
Match(";");
Stmts();
Match("}");
Match(Eof);

 c; } Eof

Match(id);
Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

 c; } Eof

Etail();
Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

/* null */
Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

Calls Pending Remaining Input

261CS 536 Fall 2012©

Match(";");
Stmts();
Match("}");
Match(Eof);

; } Eof

Stmts();
Match("}");
Match(Eof);

} Eof

/* null */
Match("}");
Match(Eof);

} Eof

Match("}");
Match(Eof);

} Eof

Match(Eof); Eof

Done! All input matched

Calls Pending Remaining Input

