
314CS 536 Fall 2012©

Error Detection in LALR
Parsers

In bottom-up, LALR parsers
syntax errors are discovered
when a blank (error) entry is
fetched from the parser action
table.
Let’s again trace how the
following illegal CSX-lite program
is parsed:
{ b + c = a; } Eof

315CS 536 Fall 2012©

Parse
Stack Top State Action Remaining Input

0 Prog → •{ Stmts } Eof Shift { b + c = a; } Eof

1

0

Prog → { • Stmts } Eof
Stmts → • Stmt Stmts
Stmts → λ •
Stmt → • id = Expr ;
Stmt → • if (Expr)

Shift b + c = a; } Eof

4

1

0

Stmt → id • = Expr ; Error
(blank)

+ c = a; } Eof

316CS 536 Fall 2012©

LALR is More Powerful
Essentially all LL(1) grammars are
LALR(1) plus many more.
Grammar constructs that confuse
LL(1) are readily handled.
• Common prefixes are no problem.

Since sets of configurations are
tracked, more than one prefix can
be followed. For example, in

Stmt → id = Expr ;
Stmt → id (Args) ;

after we match an id we have

Stmt → id • = Expr ;
Stmt → id • (Args) ;

The next token will tell us which
production to use.

317CS 536 Fall 2012©

• Left recursion is also not a
problem. Since sets of
configurations are tracked, we can
follow a left-recursive production
and all others it might use. For
example, in

Expr → • Expr + id
Expr → • id

we can first match an id:

Expr → id •

Then the Expr is recognized:

Expr → Expr • + id

The left-recursion is handled!

318CS 536 Fall 2012©

• But ambiguity will still block
construction of an LALR parser.
Some shift/reduce or reduce/
reduce conflict must appear. (Since
two or more distinct parses are
possible for some input).
Consider our original productions
for if-then and if-then-else
statements:

Stmt → if (Expr) Stmt •

Stmt → if (Expr) Stmt • else Stmt

Since else can follow Stmt, we
have an unresolvable shift/reduce
conflict.

319CS 536 Fall 2012©

Grammar Engineering
Though LALR grammars are very
general and inclusive, sometimes
a reasonable set of productions is
rejected due to shift/reduce or
reduce/reduce conflicts.
In such cases, the grammar may
need to be “engineered” to allow
the parser to operate.
A good example of this is the
definition of MemberDecls in CSX.
A straightforward definition is

MemberDecls → FieldDecls MethodDecls
 FieldDecls → FieldDecl FieldDecls
 FieldDecls → λ
MethodDecls → MethodDecl MethodDecls
 MethodDecls → λ
FieldDecl → int id ;
MethodDecl → int id () ; Body

320CS 536 Fall 2012©

When we predict MemberDecls we
get:

MemberDecls → • FieldDecls MethodDecls
 FieldDecls → • FieldDecl FieldDecls
 FieldDecls → λ•
FieldDecl → • int id ;

Now int follows FieldDecls since
MethodDecls ⇒+ int ...
Thus an unresolvable shift/reduce
conflict exists.
The problem is that int is
derivable from both FieldDecls
and MethodDecls, so when we see
an int, we can’t tell which way to
parse it (and FieldDecls → λ
requires we make an immediate
decision!).

321CS 536 Fall 2012©

If we rewrite the grammar so that
we can delay deciding from where
the int was generated, a valid
LALR parser can be built:

MemberDecls → FieldDecl MemberDecls
MemberDecls → MethodDecls
MethodDecls → MethodDecl MethodDecls
 MethodDecls → λ
FieldDecl → int id ;
MethodDecl → int id () ; Body

When MemberDecls is predicted
we have
MemberDecls → • FieldDecl MemberDecls
MemberDecls → • MethodDecls
MethodDecls → •MethodDecl MethodDecls
MethodDecls → λ •

FieldDecl → • int id ;
MethodDecl → • int id () ; Body

322CS 536 Fall 2012©

Now Follow(MethodDecls) =
Follow(MemberDecls) = “}”, so we
have no shift/reduce conflict.
After int id is matched, the next
token (a “;” or a “(“) will tell us
whether a FieldDecl or a
MethodDecl is being matched.

323CS 536 Fall 2012©

Properties of LL and LALR
Parsers
• Each prediction or reduce action is

guaranteed correct. Hence the entire
parse (built from LL predictions or
LALR reductions) must be correct.

This follows from the fact that LL
parsers allow only one valid prediction
per step. Similarly, an LALR parser
never skips a reduction if it is
consistent with the current token (and
all possible reductions are tracked).

324CS 536 Fall 2012©

• LL and LALR parsers detect an syntax
error as soon as the first invalid token
is seen.

Neither parser can match an invalid
program prefix. If a token is matched
it must be part of a valid program
prefix. In fact, the prediction made or
the stacked configuration sets show a
possible derivation of the token
accepted so far.

• All LL and LALR grammars are
unambiguous.

LL predictions are always unique and
LALR shift/reduce or reduce/reduce
conflicts are disallowed. Hence only
one valid derivation of any token
sequence is possible.

325CS 536 Fall 2012©

• All LL and LALR parsers require only
linear time and space (in terms of the
number of tokens parsed).

The parsers do only fixed work per
node of the concrete parse tree, and
the size of this tree is linear in terms
of the number of leaves in it (even
with λ-productions included!).

326CS 536 Fall 2012©

Reading Assignment
Read Chapter 8 of Crafting a
Compiler.

327CS 536 Fall 2012©

Symbol Tables in CSX
CSX is designed to make symbol
tables easy to create and use.
There are three places where a
new scope is opened:
• In the class that represents the

program text. The scope is opened
as soon as we begin processing the
classNode (that roots the entire
program). The scope stays open
until the entire class (the whole
program) is processed.

• When a methodDeclNode is
processed. The name of the
method is entered in the top-level
(global) symbol table. Declarations
of parameters and locals are placed
in the method’s symbol table. A
method’s symbol table is closed
after all the statements in its body
are type checked.

328CS 536 Fall 2012©

• When a blockNode is processed.
Locals are placed in the block’s
symbol table. A block’s symbol
table is closed after all the
statements in its body are type
checked.

329CS 536 Fall 2012©

CSX Allows no Forward
References

This means we can do type-
checking in one pass over the AST.
As declarations are processed,
their identifiers are added to the
current (innermost) symbol table.
When a use of an identifier
occurs, we do an ordinary block-
structured lookup, always using
the innermost declaration found.
Hence in
int i = j;

int j = i;

the first declaration initializes i to
the nearest non-local definition of
j.
The second declaration initializes
j to the current (local) definition
of i.

330CS 536 Fall 2012©

Forward References Require
Two Passes

If forward references are allowed,
we can process declarations in
two passes.
First we walk the AST to establish
symbol tables entries for all local
declarations. No uses (lookups)
are handled in this passes.
On a second complete pass, all
uses are processed, using the
symbol table entries built on the
first pass.
Forward references make type
checking a bit trickier, as we may
reference a declaration not yet
fully processed.
In Java, forward references to
fields within a class are allowed.
Thus in

331CS 536 Fall 2012©

class Duh {
int i = j;
int j = i;
}

a Java compiler must recognize
that the initialization of i is to the
j field and that the j declaration
is incomplete (Java forbids
uninitialized fields or variables).
Forward references do allow
methods to be mutually recursive.
That is, we can let method a call
b, while b calls a.
In CSX this is impossible!
(Why?)

332CS 536 Fall 2012©

Incomplete Declarations
Some languages, like C++, allow
incomplete declarations.
First, part of a declaration (usually
the header of a procedure or
method) is presented.
Later, the declaration is
completed.
For example (in C++):
class C {

 int i;

 public:

 int f();

};
int C::f(){return i+1;}

333CS 536 Fall 2012©

Incomplete declarations solve
potential forward reference
problems, as you can declare
method headers first, and bodies
that use the headers later.
Headers support abstraction and
separate compilation too.
In C and C++, it is common to use
a #include statement to add the
headers (but not bodies) of
external or library routines you
wish to use.
C++ also allows you to declare a
class by giving its fields and
method headers first, with the
bodies of the methods declared
later. This is good for users of the
class, who don’t always want to
see implementation details.

334CS 536 Fall 2012©

Classes, Structs and Records
The fields and methods declared
within a class, struct or record are
stored within a individual symbol
table allocated for its
declarations.
Member names must be unique
within the class, record or struct,
but may clash with other visible
declarations. This is allowed
because member names are
qualified by the object they occur
in.
Hence the reference x.a means
look up x, using normal scoping
rules. Object x should have a type
that includes local fields. The type
of x will include a pointer to the
symbol table containing the field
declarations. Field a is looked up
in that symbol table.

335CS 536 Fall 2012©

Chains of field references are no
problem.
For example, in Java
System.out.println

is commonly used.
System is looked up and found to
be a class in one of the standard
Java packages (java.lang). Class
System has a static member out
(of type PrintStream) and
PrintStream has a member
println.

