
379CS 536 Fall 2012©

Run-Time Data Structures

Static Structures
For static structures, a fixed
address is used throughout
execution.
This is the oldest and simplest
memory organization.
In current compilers, it is used
for:
• Program code (often read-only &

sharable).
• Data literals (often read-only &

sharable).
• Global variables.
• Static variables.

380CS 536 Fall 2012©

Stack Allocation
Modern programming languages
allow recursion, which requires
dynamic allocation.
Each recursive call allocates a new
copy of a routine’s local variables.
The number of local data
allocations required during
program execution is not known
at compile-time.
To implement recursion, all the
data space required for a method
is treated as a distinct data area
that is called a frame or activation
record.
Local data, within a frame, is
accessible only while a
subprogram is active.

381CS 536 Fall 2012©

In mainstream languages like C,
C++ and Java, subprograms must
return in a stack-like manner—the
most recently called subprogram
will be the first to return.
A frame is pushed onto a run-time
stack when a method is called
(activated).
When it returns, the frame is
popped from the stack, freeing
the routine’s local data.
As an example, consider the
following C subprogram:

p(int a) {

double b;

double c[10];

b = c[a] * 2.51;

}

382CS 536 Fall 2012©

Procedure p requires space for the
parameter a as well as the local
variables b and c.
It also needs space for control
information, such as the return
address.
The compiler records the space
requirements of a method.
The offset of each data item
relative to the start of the frame is
stored in the symbol table.
The total amount of space
needed, and thus the size of the
frame, is also recorded.
Assume p’s control information
requires 8 bytes (this size is
usually the same for all methods).
Assume parameter a requires 4
bytes, local variable b requires 8
bytes, and local array c requires
80 bytes.

383CS 536 Fall 2012©

Many machines require that word
and doubleword data be aligned,
so it is common to pad a frame so
that its size is a multiple of 4 or 8
bytes.
This guarantees that at all times
the top of the stack is properly
aligned.

Here is p’s frame:

Control Information

Space for a

Space for b

Space for c

Padding

Offset = 0

Offset = 8

Offset = 12

Offset = 20

Total size= 104

384CS 536 Fall 2012©

Within p, each local data object is
addressed by its offset relative to
the start of the frame.
This offset is a fixed constant,
determined at compile-time.
We normally store the start of the
frame in a register, so each piece
of data can be addressed as a
(Register, Offset) pair, which is a
standard addressing mode in
almost all computer architectures.
For example, if register R points
to the beginning of p’s frame,
variable b can be addressed as
(R,12), with 12 actually being
added to the contents of R at run-
time, as memory addresses are
evaluated.

385CS 536 Fall 2012©

Normally, the literal 2.51 of
procedure p is not stored in p’s
frame because the values of local
data that are stored in a frame
disappear with it at the end of a
call.
It is easier and more efficient to
allocate literals in a static area,
often called a literal pool or
constant pool. Java uses a
constant pool to store literals,
type, method and interface
information as well as class and
field names.

386CS 536 Fall 2012©

Accessing Frames at Run-Time
During execution there can be
many frames on the stack. When a
procedure A calls a procedure B, a
frame for B’s local variables is
pushed on the stack, covering A’s
frame. A’s frame can’t be popped
off because A will resume
execution after B returns.
For recursive routines there can
be hundreds or even thousands of
frames on the stack. All frames
but the topmost represent
suspended subroutines, waiting
for a call to return.
The topmost frame is active; it is
important to access it directly.
The active frame is at the top of
the stack, so the stack top
register could be used to access
it.

387CS 536 Fall 2012©

The run-time stack may also be
used to hold data other than
frames.
It is unwise to require that the
currently active frame always be
at exactly the top of the stack.
Instead a distinct register, often
called the frame pointer, is used
to access the current frame.
This allows local variables to be
accessed directly as offset +
frame pointer, using the indexed
addressing mode found on all
modern machines.

388CS 536 Fall 2012©

Consider the following recursive
function that computes factorials.
int fact(int n) {

if (n > 1)

return n * fact(n-1);

else

return 1;

}

389CS 536 Fall 2012©

The run-time stack
corresponding to the call
fact(3) (when the call of
fact(1) is about to return) is:

We place a slot for the function’s
return value at the very beginning
of the frame.
Upon return, the return value is
conveniently placed on the stack,
just beyond the end of the caller’s
frame. Often compilers return
scalar values in specially

Control Information

Space for n = 3

Return Value

Control Information

Space for n = 1

Return Value = 1

Control Information

Space for n = 2

Return Value

Top of Stack

Frame Pointer

390CS 536 Fall 2012©

designated registers, eliminating
unnecessary loads and stores. For
values too large to fit in a register
(arrays or objects), the stack is
used.
When a method returns, its frame
is popped from the stack and the
frame pointer is reset to point to
the caller’s frame.
In simple cases this is done by
adjusting the frame pointer by the
size of the current frame.

391CS 536 Fall 2012©

Dynamic Links
Because the stack may contain
more than just frames (e.g.,
function return values or registers
saved across calls), it is common
to save the caller’s frame pointer
as part of the callee’s control
information.
Each frame points to its caller’s
frame on the stack. This pointer is
called a dynamic link because it
links a frame to its dynamic (run-
time) predecessor.

392CS 536 Fall 2012©

The run-time stack corresponding
to a call of fact(3), with
dynamic links included, is:

Dynamic Link = Null

Space for n = 3

Return Value

Dynamic Link

Space for n = 1

Return Value = 1

Dynamic Link

Space for n = 2

Return Value

Top of Stack

Frame Pointer

393CS 536 Fall 2012©

Classes and Objects
C, C++ and Java do not allow
procedures or methods to nest.
A procedure may not be declared
within another procedure.
This simplifies run-time data
access—all variables are either
global or local.
Global variables are statically
allocated. Local variables are part
of a single frame, accessed
through the frame pointer.
Java and C++ allow classes to
have member functions that have
direct access to instance
variables.

394CS 536 Fall 2012©

Consider:
class K {

int a;

int sum(){

int b;

return a+b;

} }

Each object that is an instance of
class K contains a member
function sum. Only one translation
of sum is created; it is shared by
all instances of K.
When sum executes it needs two
pointers to access local and
object-level data.
Local data, as usual, resides in a
frame on the run-time stack.

395CS 536 Fall 2012©

Data values for a particular
instance of K are accessed
through an object pointer (called
the this pointer in Java and
C++). When obj.sum() is called,
it is given an extra implicit
parameter that a pointer to obj.

When a+b is computed, b, a local
variable, is accessed directly
through the frame pointer. a, a
member of object obj, is
accessed indirectly through the
object pointer that is stored in the
frame (as all parameters to a
method are).

Object Pointer

Space for b

Control Information

Rest of Stack

Top of Stack

Frame Pointer

Space for a

Object Obj

396CS 536 Fall 2012©

C++ and Java also allow
inheritance via subclassing. A
new class can extend an existing
class, adding new fields and
adding or redefining methods.
A subclass D, of class C, maybe be
used in contexts expecting an
object of class C (e.g., in method
calls).
This is supported rather easily—
objects of class D always contain
a class C object within them.
If C has a field F within it, so does
D. The fields D declares are merely
appended at the end of the
allocations for C.
As a result, access to fields of C
within a class D object works
perfectly.

