
406CS 536 Fall 2012©

Heap Management
A very flexible storage allocation
mechanism is heap allocation.
Any number of data objects can
be allocated and freed in a
memory pool, called a heap.
Heap allocation is enormously
popular. Almost all non-trivial Java
and C programs use new or
malloc.

407CS 536 Fall 2012©

Heap Allocation
A request for heap space may be
explicit or implicit.
An explicit request involves a call
to a routine like new or malloc.
An explicit pointer to the newly
allocated space is returned.
Some languages allow the
creation of data objects of
unknown size. In Java, the +
operator is overloaded to
represent string catenation.
The expression Str1 + Str2
creates a new string representing
the catenation of strings Str1 and
Str2. There is no compile-time
bound on the sizes of Str1 and
Str2, so heap space must be
implicitly allocated to hold the
newly created string.

408CS 536 Fall 2012©

Whether allocation is explicit or
implicit, a heap allocator is
needed. This routine takes a size
parameter and examines unused
heap space to find space that
satisfies the request.
A heap block is returned. This
block must be big enough to
satisfy the space request, but it
may well be bigger.
Heaps blocks contain a header
field that contains the size of the
block as well as bookkeeping
information.
The complexity of heap allocation
depends in large measure on how
deallocation is done.
Initially, the heap is one large
block of unallocated memory.
Memory requests can be satisfied
by simply modifying an “end of

409CS 536 Fall 2012©

heap” pointer, very much as a
stack is pushed by modifying a
stack pointer.
Things get more involved when
previously allocated heap objects
are deallocated and reused.
Deallocated objects are stored for
future reuse on a free space list.
When a request for n bytes of
heap space is received, the heap
allocator must search the free
space list for a block of sufficient
size. There are many search
strategies that might be used:
• Best Fit

The free space list is searched for
the free block that matches most
closely the requested size. This
minimizes wasted heap space, the
search may be quite slow.

410CS 536 Fall 2012©

• First Fit
The first free heap block of
sufficient size is used. Unused
space within the block is split off
and linked as a smaller free space
block. This approach is fast, but
may “clutter” the beginning of the
free space list with a number of
blocks too small to satisfy most
requests.

• Next Fit
This is a variant of first fit in which
succeeding searches of the free
space list begin at the position
where the last search ended. The
idea is to “cycle through” the entire
free space list rather than always
revisiting free blocks at the head of
the list.

411CS 536 Fall 2012©

• Segregated Free Space Lists
There is no reason why we must
have only one free space list. An
alternative is to have several,
indexed by the size of the free
blocks they contain.

412CS 536 Fall 2012©

Deallocation Mechanisms
Allocating heap space is fairly
easy. But how do we deallocate
heap memory no longer in use?
Sometimes we may never need to
deallocate! If heaps objects are
allocated infrequently or are very
long-lived, deallocation is
unnecessary. We simply fill heap
space with “in use” objects.
Virtual memory & paging may
allow us to allocate a very large
heap area.
On a 64-bit machine, if we
allocate heap space at 1 MB/sec,
it will take 500,000 years to span
the entire address space!
Fragmentation of a very large
heap space commonly forces us
to include some form of reuse of
heap space.

413CS 536 Fall 2012©

User-controlled Deallocation
Deallocation can be manual or
automatic. Manual deallocation
involves explicit programmer-
initiated calls to routines like
free(p) or delete(p).
The object is then added to a free-
space list for subsequent
reallocation.
It is the programmer’s
responsibility to free unneeded
heap space by executing
deallocation commands. The heap
manager merely keeps track of
freed space and makes it available
for later reuse.
The really hard decision—when
space should be freed—is shifted
to the programmer, possibly
leading to catastrophic dangling
pointer errors.

414CS 536 Fall 2012©

Consider the following C program
fragment
q = p = malloc(1000);
free(p);
/* code containing more malloc’s */
q[100] = 1234;

After p is freed, q is a dangling
pointer. q points to heap space
that is no longer considered
allocated.
Calls to malloc may reassign the
space pointed to by q.
Assignment through q is illegal,
but this error is almost never
detected.
Such an assignment may change
data that is now part of another
heap object, leading to very
subtle errors. It may even change
a header field or a free-space link,
causing the heap allocator itself
to fail!

415CS 536 Fall 2012©

Automatic Garbage Collection
The alternative to manual
deallocation of heap space is
garbage collection.
Compiler-generated code tracks
pointer usage. When a heap
object is no longer pointed to, it is
garbage, and is automatically
collected for subsequent reuse.
Many garbage collection
techniques exist. Here are some
of the most important
approaches:

416CS 536 Fall 2012©

Reference Counting
This is one of the oldest and
simplest garbage collection
techniques.
A reference count field is added to
each heap object. It counts how
many references to the heap
object exist. When an object’s
reference count reaches zero, it is
garbage and may collected.
The reference count field is
updated whenever a reference is
created, copied, or destroyed.
When a reference count reaches
zero and an object is collected, all
pointers in the collected object
are also be followed and
corresponding reference counts
decremented.

417CS 536 Fall 2012©

As shown below, reference
counting has difficulty with
circular structures. If pointer P is

set to null, the object’s reference
count is reduced to 1. Both
objects have a non-zero count,
but neither is accessible through
any external pointer. The two
objects are garbage, but won’t be
recognized as such.
If circular structuresare common,
then an auxiliary technique, like
mark-sweep collection, is needed
to collect garbage that reference
counting misses.

Link
Data

Reference Count = 1

Global pointer P

Link
Data

Reference Count = 2

418CS 536 Fall 2012©

Mark-Sweep Collection
Many collectors, including mark &
sweep, do nothing until heap
space is nearly exhausted.
Then it executes a marking phase
that identifies all live heap
objects.
Starting with global pointers and
pointers in stack frames, it marks
reachable heap objects. Pointers
in marked heap objects are also
followed, until all live heap
objects are marked.
After the marking phase, any
object not marked is garbage that
may be freed. We then sweep
through the heap, collecting all
unmarked objects. During the
sweep phase we also clear all
marks from heap objects found to
be still in use.

419CS 536 Fall 2012©

Mark-sweep garbage collection is
illustrated below.

Objects 1 and 3 are marked
because they are pointed to by
global pointers. Object 5 is
marked because it is pointed to
by object 3, which is marked.
Shaded objects are not marked
and will be added to the free-
space list.
In any mark-sweep collector, it is
vital that we mark all accessible
heap objects. If we miss a pointer,
we may fail to mark a live heap
object and later incorrectly free it.

Global pointer Global pointer

Object 1 Object 3 Object 5

Internal pointer

420CS 536 Fall 2012©

Finding all pointers is a bit tricky
in languages like Java, C and C++,
that have pointers mixed with
other types within data
structures, implicit pointers to
temporaries, and so forth.
Considerable information about
data structures and frames must
be available at run-time for this
purpose. In cases where we can’t
be sure if a value is a pointer or
not, we may need to do
conservative garbage collection.
In mark-sweep garbage collection
all heap objects must be swept.
This is costly if most objects are
dead. We’d prefer to examine only
live objects.

421CS 536 Fall 2012©

Compaction
After the sweep phase, live heap
objects are distributed
throughout the heap space. This
can lead to poor locality. If live
objects span many memory
pages, paging overhead may be
increased. Cache locality may be
degraded too.
We can add a compaction phase to
mark-sweep garbage collection.
After live objects are identified,
they are placed together at one
end of the heap. This involves
another tracing phase in which
global, local and internal heap
pointers are found and adjusted
to reflect the object’s new
location.
Pointers are adjusted by the total
size of all garbage objects

422CS 536 Fall 2012©

between the start of the heap and
the current object. This is
illustrated below:

Compaction merges together
freed objects into one large block
of free heap space. Fragments are
no longer a problem.
Moreover, heap allocation is
greatly simplified. Using an “end
of heap” pointer, whenever a heap
request is received, the end of
heap pointer is adjusted, making
heap allocation no more complex
than stack allocation.

Global pointer Adjusted Global pointer

Object 1 Object 3 Object 5

Adjusted internal pointer

423CS 536 Fall 2012©

Because pointers are adjusted,
compaction may not be suitable
for languages like C and C++, in
which it is difficult to
unambiguously identify pointers.

424CS 536 Fall 2012©

Copying Collectors
Compaction provides many
valuable benefits. Heap allocation
is simple end efficient. There is no
fragmentation problem, and
because live objects are adjacent,
paging and cache behavior is
improved.
An entire family of garbage
collection techniques, called
copying collectors are designed to
integrate copying with
recognition of live heap objects.
Copying collectors are very
popular and are widely used.
Consider a simple copying
collector that uses semispaces. We
start with the heap divided into
two halves—the from and to
spaces.

425CS 536 Fall 2012©

Initially, we allocate heap requests
from the from space, using a
simple “end of heap” pointer.
When the from space is
exhausted, we stop and do
garbage collection.
Actually, though we don’t collect
garbage. We collect live heap
objects—garbage is never
touched.
We trace through global and local
pointers, finding live objects. As
each object is found, it is moved
from its current position in the
from space to the next available
position in the to space.
The pointer is updated to reflect
the object’s new location. A
“forwarding pointer” is left in the
object’s old location in case there
are multiple pointers to the same
object.

426CS 536 Fall 2012©

This is illustrated below:

The from space is completely
filled. We trace global and local
pointers, moving live objects to
the to space and updating
pointers. This is illustrated below.
(Dashed arrows are forwarding
pointers). We have yet to handle
pointers internal to copied heap
objects. All copied heap objects
are traversed. Objects referenced
are copied and internal pointers

Global pointer Global pointer

Object 1 Object 3 Object 5

Internal pointer

From Space

To Space

427CS 536 Fall 2012©

are updated. Finally, the to and
from spaces are interchanged,
and heap allocation resumes just
beyond the last copied object.
This is illustrated in the lower
figure.

Global pointer Global pointer

Object 5

Internal pointer

From Space

To SpaceObject 1 Object 3

Global pointer Global pointer

Object 5

Internal pointer

From Space

To Space

Object 1 Object 3

End of Heap pointer

428CS 536 Fall 2012©

The biggest advantage of copying
collectors is their speed. Only live
objects are copied; deallocation of
dead objects is essentially free. In
fact, garbage collection can be
made, on average, as fast as you
wish—simply make the heap
bigger. As the heap gets bigger,
the time between collections
increases, reducing the number of
times a live object must be
copied. In the limit, objects are
never copied, so garbage
collection becomes free!
Of course, we can’t increase the
size of heap memory to infinity. In
fact, we don’t want to make the
heap so large that paging is
required, since swapping pages to
disk is dreadfully slow. If we can
make the heap large enough that
the lifetime of most heap objects

429CS 536 Fall 2012©

is less than the time between
collections, then deallocation of
short-lived objects will appear to
be free, though longer-lived
objects will still exact a cost.
Aren’t copying collectors terribly
wasteful of space? After all, at
most only half of the heap space
is actually used. The reason for
this apparent inefficiency is that
any garbage collector that does
compaction must have an area to
copy live objects to. Since in the
worst case all heap objects could
be live, the target area must be as
large as the heap itself. To avoid
copying objects more than once,
copying collectors reserve a to
space as big as the from space.
This is essentially a space-time
trade-off, making such collectors

430CS 536 Fall 2012©

very fast at the expense of
possibly wasted space.
If we have reason to believe that
the time between garbage
collections will be greater than
the average lifetime of most
heaps objects, we can improve
our use of heap space. Assume
that 50% or more of the heap will
be garbage when the collector is
called. We can then divide the
heap into 3 segments, which we’ll
call A, B and C. Initially, A and B
will be used as the from space,
utilizing 2/3 of the heap. When
we copy live objects, we’ll copy
them into segment C, which will
be big enough if half or more of
the heap objects are garbage.
Then we treat C and A as the from
space, using B as the to space for
the next collection. If we are

431CS 536 Fall 2012©

unlucky and more than 1/2 the
heap contains live objects, we can
still get by. Excess objects are
copied onto an auxiliary data
space (perhaps the stack), then
copied into A after all live objects
in A have been moved. This slows
collection down, but only rarely (if
our estimate of 50% garbage per
collection is sound). Of course,
this idea generalizes to more than
3 segments. Thus if 2/3 of the
heap were garbage (on average),
we could use 3 of 4 segments as
from space and the last segment
as to space.

432CS 536 Fall 2012©

Generational Techniques
The great strength of copying
collectors is that they do no work
for objects that are born and die
between collections. However, not
all heaps objects are so short-
lived. In fact, some heap objects
are very long-lived. For example,
many programs create a dynamic
data structure at their start, and
utilize that structure throughout
the program. Copying collectors
handle long-lived objects poorly.
They are repeatedly traced and
moved between semispaces
without any real benefit.
Generational garbage collection
techniques were developed to
better handle objects with varying
lifetimes. The heap is divided into
two or more generations, each

433CS 536 Fall 2012©

with its own to and from space.
New objects are allocated in the
youngest generation, which is
collected most frequently. If an
object survives across one or
more collections of the youngest
generation, it is “promoted” to the
next older generation, which is
collected less often. Objects that
survive one or more collections of
this generation are then moved to
the next older generation. This
continues until very long-lived
objects reach the oldest
generation, which is collected
very infrequently (perhaps even
never).
The advantage of this approach is
that long-lived objects are
“filtered out,” greatly reducing the
cost of repeatedly processing
them. Of course, some long-lived

434CS 536 Fall 2012©

objects will die and these will be
caught when their generation is
eventually collected.
An unfortunate complication of
generational techniques is that
although we collect older
generations infrequently, we must
still trace their pointers in case
they reference an object in a
newer generation. If we don’t do
this, we may mistake a live object
for a dead one. When an object is
promoted to an older generation,
we can check to see if it contains
a pointer into a younger
generation. If it does, we record
its address so that we can trace
and update its pointer. We must
also detect when an existing
pointer inside an object is
changed. Sometimes we can do
this by checking “dirty bits” on

435CS 536 Fall 2012©

heap pages to see which have
been updated. We then trace all
objects on a page that is dirty.
Otherwise, whenever we assign to
a pointer that already has a value,
we record the address of the
pointer that is changed. This
information then allows us to only
trace those objects in older
generations that might point to
younger objects.
Experience shows that a carefully
designed generational garbage
collectors can be very effective.
They focus on objects most likely
to become garbage, and spend
little overhead on long-lived
objects. Generational garbage
collectors are widely used in
practice.

436CS 536 Fall 2012©

Conservative Garbage
Collection

The garbage collection techniques
we’ve studied all require that we
identify pointers to heap objects
accurately. In strongly typed
languages like Java or ML, this can
be done. We can table the
addresses of all global pointers.
We can include a code value in a
frame (or use the return address
stored in a frame) to determine
the routine a frame corresponds
to. This allows us to then
determine what offsets in the
frame contain pointers. When
heap objects are allocated, we can
include a type code in the object’s
header, again allowing us to
identify pointers internal to the
object.

437CS 536 Fall 2012©

Languages like C and C++ are
weakly typed, and this makes
identification of pointers much
harder. Pointers may be type-cast
into integers and then back into
pointers. Pointer arithmetic allows
pointers into the middle of an
object. Pointers in frames and
heap objects need not be
initialized, and may contain
random values. Pointers may
overlay integers in unions,
making the current type a
dynamic property.
As a result of these complications,
C and C++ have the reputation of
being incompatible with garbage
collection. Surprisingly, this belief
is false. Using conservative
garbage collection, C and C++
programs can be garbage
collected.

438CS 536 Fall 2012©

The basic idea is simple—if we
can’t be sure whether a value is a
pointer or not, we’ll be
conservative and assume it is a
pointer. If what we think is a
pointer isn’t, we may retain an
object that’s really dead, but we’ll
find all valid pointers, and never
incorrectly collect a live object.
We may mistake an integer (or a
floating value, or even a string) as
an pointer, so compaction in any
form can’t be done. However,
mark-sweep collection will work.
Garbage collectors that work with
ordinary C programs have been
developed. User programs need
not be modified. They simply are
linked to different library
routines, so that malloc and free
properly support the garbage
collector. When new heap space is

439CS 536 Fall 2012©

required, dead heap objects may
be automatically collected, rather
than relying entirely on explicit
free commands (though frees
are allowed; they sometimes
simplify or speed heap reuse).
With garbage collection available,
C programmers need not worry
about explicit heap management.
This reduces programming effort
and eliminates errors in which
objects are prematurely freed, or
perhaps never freed. In fact,
experiments have shown that
conservative garbage collection is
very competitive in performance
with application-specific manual
heap management.

