
CS 536 — Spring 2005

Programming Assignment 1
Symbol Table Classes

Due: Friday, February 4, 2005

Not accepted after Friday, February 4, 2005

Introduction

You are to write a set of Java classes that implement a block-structured symbol table.

You must also write a test driver and create test data that thoroughly test your symbol

table implementation.

You will implement or use the following six Java classes: Symb, SymbolTable ,

TestSym , DuplicateException , EmptySTException and P1.

• Subclasses of the Symbclass will eventually be used in your compiler to store informa-

tion about each identifier that appears in a program (i.e., the variable and function

names). The only information stored in a Symb will be the name of the identifier (a

String); more information will be added to subclasses of Symb. Recall that Java’s

subclassing rules allow any subclass of Symb to be used where a Symb object is

expected. This means that the symbol table methods we develop in this project will

accept all subclasses of Symb. TestSym is a subclass of Symb that contains a single

integer field. It is used to test the operation of the SymbolTable class.

• The SymbolTable class will implement a block-structured symbol table. It can be

built using a linked list of Java Hashtable objects, one for each open scope.

• The DuplicateException and EmptySTException classes are exceptions that can

be thrown by methods of the SymbolTable class.

• Class P1 will implement an interactive test driver used to test your SymbolTable
class.

Class Specifications

1.class Symb

Symb(String s) The class constructor; initialize Symb to have name s .

String name() Return the name of this Symb.

String toString() Return a string representation of this Symb object.

2.class TestSym

3.class SymbolTable

4.class P1

5.classes DuplicateException and EmptySTException

These two classes are empty. They are used to signal duplicate insertion and empty sym-

bol tables errors.

TestSym(String s, int i) The class constructor; initialize TestSym to have name s
and value i .

int value() Return the value of this TestSym .

String toString() Return a string representation of this TestSym object.

SymbolTable() The class constructor; initialize SymbolTable to

contain a single scope that is initially empty.

void openScope() Add a new, initially empty scope to the list of scopes

contained in this SymbolTable .

void closeScope() If the list of scopes in this SymbolTable is empty,

throw an EmptySTException . Otherwise, remove

the current (front) scope from the list of scopes con-

tained in this SymbolTable .

void insert(Symb s) If the list of scopes in this SymbolTable is empty,

throw an EmptySTException . If the current (first)

scope contains a Symb whose name is the same as

that of s (ignoring case), throw a DuplicateEx-
ception . Otherwise, insert s into the current

(front) scope of this SymbolTable .

Symb localLookup(String n) If the list of scopes in this SymbolTable is empty,

return null. If the current (first) scope contains a

Symb whose name is n (ignoring case), return that

Symb. Otherwise, return null.

Symb globalLookup(String n) If any scope contains a Symb whose name is n
(ignoring case), return the first matching Symb
found (in the scope nearest to the front of the scope

list). Otherwise, return null.

void dump(PrintStream p) This method is for debugging. The contents of this

SymbolTable are written to Printstream p
(System.out is a Printstream).

String toString() Return a string representation of this Symbol-
Table .

void main(String[] args) The test driver used to test your SymbolTable imple-

mentation.
2 of 5

Getting Started

We’ll be using the Jikes Java compiler. Later we will use the JLex scanner generator and

the JavaCup parser generator. To make sure these Java-based tools operate properly, put

the following two lines in your .cshrc.local file (which can be found in your home

directory):

setenv CLASSPATH ".:./classes:/s/java/jre/lib/rt.jar:/p/course/
cs536-fischer/public/JAVA"

setenv VPATH "./classes"

(These are two lines, not three. Ignore the line break after the /.)

We have placed a partial implementations of the required classes, along with a Make-
file and sample test data in ~cs536-1/public/proj1/startup . You will certainly

need to edit and extend the SymbolTable and P1 classes. You may leave the other

classes (which are quite simple) as they are. The Makefile allows you to easily compile

and test your solution to this assignment. You should use make to speed and simplify

program development. The command

make

will recompile classes as needed after any changes you make. The command

make test

will do necessary recompilations and then test your solution by calling P1.main with

the commands in testInput . (You should edit this file to more thoroughly test your

implementation). The command

make clean

will remove all classfiles created by the compiler. Note that all class files are placed in

the classes subdirectory. This is done to avoid cluttering your top-level project

directory.

You will probably want to use the standard Java utility class java.util.Hashtable
in implementing your block-structured symbol table. Its operation is detailed at

http://java.sun.com/j2se/1.4.2/docs/api/index.html .

The Test Driver

You’ll need to create an interactive test driver, in method main of class P1, to test the op-

eration of your block structured symbol table. Your test driver should accept the

following commands. One letter abbreviations of the commands should be allowed.

Command Operation

Open Open a new scope

Close Close the top (innermost) scope.

Dump Dump the contents of symbol

table.
3 of 5

The following illustrates the operation of the test driver (text entered by the user is print-

ed in bold face). Note that this example is only meant to illustrate our testing interface;

it does not by itself represent an exhaustive test set. The exact wording of responses to

commands is up to you.

insert
Enter symbol: wisconsin
Enter associated integer: 1848
(wisconsin:1848) entered into symbol table.
insert
Enter symbol: florida
Enter associated integer: 1845
(florida:1845) entered into symbol table.
lookup
Enter symbol: Wisconsin
(wisconsin:1848) found in top scope
lookup
Enter symbol: Florida
(florida:1845) found in top scope
lookup
Enter symbol: Hawaii
Hawaii not found in top scope
insert
Enter symbol: wisconsin
Enter associated integer: 1836
wisconsin already entered into top scope.
open
New scope opened.
insert
Enter symbol: wisconsin
Enter associated integer: 1836
(wisconsin:1836) entered into symbol table.

Insert Read a stirring and an integer

and insert the (string,integer) pair

into the innermost scope.

Lookup Read a string and lookup (in the

top scope) the symbol table entry

associated with the string. Print

the integer in the symbol table

entry found.

Global Read a string and lookup (in the

nearest scope that contains an

entry) the symbol table entry

associated with the string. Print

the integer in the symbol table

entry found.

Quit Exit the test driver.

Command Operation
4 of 5

lookup
Enter symbol: Wisconsin
(wisconsin:1836) found in top scope
dump
Contents of symbol table:
{wisconsin=(wisconsin:1836)}
{florida=(florida:1845), wisconsin=(wisconsin:1848)}
lookup
Enter symbol: Florida
Florida not found in top scope
global
Enter symbol: Florida
(florida:1845) found in symbol table
close
Top scope closed.
lookup
Enter symbol: Wisconsin
(wisconsin:1848) found in top scope
lookup
Enter symbol: Florida
(florida:1845) found in top scope
close
Top scope closed.
lookup
Enter symbol: Wisconsin
Wisconsin not found in top scope
quit
Testing done

What To Hand In

We’ve created a directory for you based on your login in ~cs536-1/public/proj1/
handin . Copy into your handin directory your versions of SymbolTable.java ,

P1.java , and any other Java source files you changed or added. If you changed the

Makefile we provided, include your version (so that we can build and test your sym-

bol table routines). Include your version of testInput that comprises the tests you

used to verify the operation of your symbol table routines. Include testOutput , which

is the output generated by your program in response to your testInput file. You

should include a READMEfile to hold external documentation. We’ll run your program

on a variety of our own test programs. Do not hand in any class files; we’ll create them

as needed using your source files and Makefile .

When your program begins execution it should print out your full name and student ID

number. We will grade your program on the basis of the completeness of your testing

(as shown in the testInput and testOutput files) as well as the correct operation of

your symbol table routines.

The quality of your documentation is also important. Make sure that you provide both

external documentation (in the READMEfile) and internal documentation (in the source

files). It should be easy for the grader to understand the organization and structure of

your program. We may exact significant penalties if we find your program poorly doc-

umented or difficult to understand.
5 of 5

	CS 536 — Spring 2005
	Programming Assignment 1 Symbol Table Classes
	1. class Symb
	2. class TestSym
	3. class SymbolTable
	4. class P1
	5. classes DuplicateException and EmptySTException

