
12CS 536 Fall 2002
©

Visibility of Class Members
Class members may be declared as
public, private or protected.
Public members may be accessed from
outside a class.
Private members of a class may be
accessed only from with the class
itself.
Protected members may be accessed
only from with the class itself or from
within one of its subclasses.
Members nor marked public, private
or protected are shared at the
package level—similar to C++’s friend
mechanism.

13CS 536 Fall 2002
©

Example:
 class Customer {

 int id;

 private int pinCode;

}

Customer me = new Customer();

me.id = 1234; //OK

me.pinCode = 7777;
//Compile-time error

In a class, a special method, main ,
declared as
 static public void
 main(String[] args)

is automatically executed when a
class is run.
main is very useful as a “test driver”
for auxiliary and library classes.

14CS 536 Fall 2002
©

Final Members
A field may be declared final making
it effectively a constant.
class Point {

 int x,y;

 static final Point origin
= new Point(0,0);

 Point(int xin, int yin) {

 x = xin; y = yin;
 }
}

Final fields may be used to create
constants within a class:
class Card {
 final static int Clubs = 1;
 final static int Diamonds = 2;
 final static int Hearts = 3;
 final static int Spades = 4;
 int suit = Spades;
}

15CS 536 Fall 2002
©

Inside a class suit names are available
for use without qualification. E.g.,
int suit = Spades;

Outside a class, the field names must
be qualified using the class name:
Card c = new Card();

c.suit = Card.Clubs;

Methods may also be marked as final.
This forbids redeclaration in a
subclass, allowing a more efficient
implementation. Security may also be
improved if a key method is known to
be unchangeable.

16CS 536 Fall 2002
©

Java Arrays
In Java, arrays are implemented as a
special kind of class. Arrays of
primitive types are implemented as an
object that contains a block of values
within it. Arrays of objects are
implemented as an object that
contains a block of object references
within it. Allocating an array of
objects does not allocate the objects
themselves. Hence within an array of
objects, some positions may reference
actual objects while other may
contain null (this can be
advantageous) if objects are large.
Multi-dimensional arrays are arrays
of arrays. Arrays within an array need
not all have the same size.
Hence we may see

17CS 536 Fall 2002
©

int[][] TwoDim = new int[3][];

TwoDim[0] = new int[1];

TwoDim[1] = new int[2];

TwoDim[2] = new int[3];

The size of an array is part of its
value; not its type.
Thus
int [] A = new int[10];

int [] B = new int[5];

A = B;

is valid.
Pascal showed that making an array’s
size part of its type is undesirable.
(Why?)
Still, forcing an array to have a fixed
size can be necessary (e.g., an array
indexed by months). (How do we
simulate a fixed-size array?).

18CS 536 Fall 2002
©

Subclassing in Java
When a new class is defined in terms
of an existing class, the new class
extends the existing class. The new
class inherits all public and protected
members of its parent (or base) class.
The new class may add new methods
or fields. It may also redefine
inherited methods or fields.
class Point {

 int x,y;
 Point(int xin, int yin) {
 x = xin; y = yin;
 }
 static float dist(
 Point P1, Point P2) {
 return (float) Math.sqrt(
 (P1.x-P2.x)*(P1.x-P2.x)+

(P1.y-P2.y)*(P1.y-P2.y));
 }
}

19CS 536 Fall 2002
©

class Point3 extends Point {

 int z;
 Point3(int xin, int yin,
 int zin) {
 super(xin,yin); z=zin;
 }
 static float dist(
 Point3 P1, Point3 P2) {
 float d=Point.dist(P1,P2);
 return (float) Math.sqrt(
 (P1.z-P2.z)*(P1.z-P2.z)+

 d*d);
 }
}

Note that although Point3 redefines
dist , the old definition of dist is
still available by using the parent
class as a qualifier (Point.dist).
The same is true for fields that are
hidden when a field in a parent is
redeclared.

20CS 536 Fall 2002
©

Non-static methods are automatically
virtual: a redefined method is
automatically used in all inherited
methods including those defined in
parent classes that think they are
using an earlier definition of the
class.
Example:
 class C {

 void DoIt()(PrintIt();}
 void PrintIt()
 {println("C rules!");}
 }
 class D extends C {
 void PrintIt()
 {println("D rules!");}
 void TestIt() {DoIt();}
 }
 D dvar = new D();
 dvar.TestIt();

D rules! is printed.

21CS 536 Fall 2002
©

Static methods in Java are not virtual
(this can make them easier to
implement efficiently).

22CS 536 Fall 2002
©

Abstract Classes and Methods
Sometimes a Java class is not meant
to be used by itself because it is
intentionally incomplete.
Rather, the class is meant to be
starting point for the creation (via
subclassing) of more complete
classes.
Such classes are abstract.
Example:
abstract class Shape {

 Point location;

}

class Circle extends Shape {

 float radius;

}

23CS 536 Fall 2002
©

Methods can also be made abstract to
indicate that their actual definition
will appear in subclasses:
abstract class Shape {
 Point location;
 abstract float area();
}
class Circle extends Shape {
 float radius;
 float area(){
 return Math.pi*radius*radius;
 }
}

24CS 536 Fall 2002
©

Subtyping and Inheritance
We can use a subtyping mechanism,
as found in C++ or Java, for two
different purposes:
• We may wish to inherit the actual

implementations of classes and
members to use as the basis of a
more complete or extended class.
To inherit an implementation, we say
a given class “extends” an existing
class:
class Derived extends Base
 { ... };

Class Derived contains all of the
members of Base plus any others it
cares to add.

25CS 536 Fall 2002
©

• We may wish to inherit an interface—
a set of method names and values
that will be available for use.
To inherit (or claim) an interface, we
use a Java interface definition.
An interface doesn’t implement
anything; rather, it gives a name to a
set of operations or values that may
be available within one or more
classes.

26CS 536 Fall 2002
©

Why are Interfaces Important?
Many classes, although very different,
share a common subset of values or
operations. We may be willing to use
any such class as long as only
interface values or operations are
used.
For example, many objects can be
ordered (or at least partially-ordered)
using a “less than” operation.
If we always implement less than the
same way, for example,
boolean lessThan(Object o1,

 Object o2);

then we can create an interface that
admits all classes that know about
the lessThan function:

27CS 536 Fall 2002
©

interface Compare {

 boolean lessThan(Object o1,
 Object o2);

}

Now different classes can each
implement the Compare interface,
proclaiming to the world that they
know how to compare objects of the
class they define:
class IntCompare implements Compare {
 public boolean lessThan(Object i1,
 Object i2){
 return ((Integer)i1).intValue() <
 ((Integer)i2).intValue();}
}
class StringCompare implements
 Compare {
 public boolean lessThan(Object i1,
 Object i2){
 return
((String)i1).compareTo((String)i2)<0;
}}

28CS 536 Fall 2002
©

The advantage of using interfaces is
that we can now define a method or
class that only depends on the given
interface, and which will accept any
type that implements that interface.
class PrintCompare {
 public static void printAns(
 Object v1, Object v2, Compare c){
 System.out.println(
 v1.toString() + " < " +

v2.toString() + " is " +
 new Boolean(c.lessThan(v1,v2))
 .toString());
} }
class Test {
 public static void
 main(String args[]){
 Integer i1 = new Integer(2);
 Integer i2 = new Integer(1);
 PrintCompare.printAns(
 i1,i2,new IntCompare());
 String s2 = "abcdef";
 String s1 = "xyzaa";
 PrintCompare.printAns(
 s1,s2,new StringCompare());}}

29CS 536 Fall 2002
©

Since classes may have many methods
and modes of use or operation, a
given class may implement many
different interfaces. For example,
many classes support the Clonable
interface, which states that objects of
the class may be duplicated (cloned).

30CS 536 Fall 2002
©

Exceptions in Java
Java provides a fairly elaborate
exception handling mechanism based
on the throw-catch model.
All exceptions are objects, required to
be a subclass of Throwable .
Class Throwable has two subclasses,
Exception and Error . Class
Exception has a subclass
RuntimeException .
Exceptions may be explicitly thrown
(using a throw statement) or they
may be implicitly thrown as the result
of a run-time error.
For example, an
ArithmeticException is thrown for
certain run-time arithmetic errors,
like division by zero.

31CS 536 Fall 2002
©

Unlike other languages, Java divides
exceptions into two general classes:
checked and unchecked.
A checked exception must either be
caught (using a try-catch block) or
propagated (by marking a method as
throwing the exception).
This means that checked exceptions
cannot be ignored—you must be
prepared to catch them or you must
“advertise” to your callers that you
may throw an exception back to
them.
Unchecked exceptions need not be
caught or marked as potentially
thrown. This makes exception
handling for such exceptions
optional. Unchecked exceptions are
typically those that might occur so

32CS 536 Fall 2002
©

often (like NullPointerException
or ArithmeticException) that
forced checks could unnecessarily
clutter a program without significant
benefit.
How are checked and unchecked
exceptions distinguished?
• Any exception that is a member (or

subclass) of Error or
RuntimeException is unchecked.

• All other exceptions must be checked.
Exceptions are propagated
dynamically:
• When an exception is thrown

(explicitly or implicitly) the
innermost try-catch block that can
“catch” the exception is selected, and

33CS 536 Fall 2002
©

the catch block that matches the
exception is executed.

• A catch block “catches” a given
exception if the class of the
exception is the same as the class
used in the catch. An exception that
is a subclass of the catch’s exception
class will also be caught.
Thus an catch that handles class
Throwable catches all exceptions.

• If no catch can handle the exception
in the current method, a return to the
method’s caller is forced, and the
exception is rethrown from the point
of call.

• This process is repeated until a catch
that can handle the exception is
found or until we force a return from
the main method.

34CS 536 Fall 2002
©

• If a return from the main method is
forced, no handler exists. A run-time
error message is printed (“Uncaught
exception”) and execution is
terminated.

• One of the limitations of Java’s
exception mechanism (and similar
mechanisms found in other
languages) is that there is no “retry”
mechanism. Once an exception is
thrown, we never go back to the
point where the exception occurred.
This is why Scheme’s call/cc
mechanism is considered so special
and unique.

35CS 536 Fall 2002
©

Example:
class badValue extends Exception{
 float value;
 badValue(float f) {value=f;} }

float sqrt(float val)
 throws badValue {
 if (val < 0.0)
 throw new badValue(val);
 else return
 (float) Math.sqrt(val); }

try {
 System.out.println(
 "Ans = " + sqrt(-123.0));
} catch (badValue b) {
 System.out.println(
 "Can't take sqrt of "+b)
}

