
108CS 538 Spring 2002
©

Function Calls
In List and Scheme, function calls are
represented as lists.
(A B C) means:
Evaluate A (to a function)
Evaluate B and C (as parameters)
Call A with B and C as its parameters
Use the value returned by the call as
the “meaning” of (A B C) .
cons , car and cdr are predefined
symbols bound to built-in functions
that build and access lists and
S-Expressions.
Literals (of type integer, real, rational,
complex, string, character and
boolean) evaluate to themselves.

109CS 538 Spring 2002
©

For example (⇒ means “evaluates
to”)
(cons 1 2) ⇒ (1 . 2)

(cons 1 ()) ⇒ (1)

(car (cons 1 2)) ⇒ 1

(cdr (cons 1 ())) ⇒ ()

But,
(car (1 2)) fails during execution!

Why?
The expression (1 2) looks like a call,
but 1 isn’t a function. We need some
way to “quote” symbols and lists we
don’t want evaluated.
(quote arg)

is a special function that returns its
argument unevaluated.

110CS 538 Spring 2002
©

Thus (quote (1 2)) doesn’t try to
evaluate the list (1 2) ; it just returns
it.
Since quotation is often needed, it
may be abbreviated using a single
quote. That is
(quote arg) ≡ 'arg

Thus
(car '(a b c)) ⇒ a

(cdr '((A) (B) (C))) ⇒
((B) (C))

(cons 'a '1) ⇒ (a . 1)

But,
('cdr '(A B)) fails!

Why?

111CS 538 Spring 2002
©

User-defined Functions
The list
(lambda (args) (body))

evaluates to a function with (args)
as its argument list and (body) as
the function body.
No quotes are needed for (args) or
(body) .
Thus
(lambda (x) (+ x 1)) evaluates

to the increment function.
Similarly,
((lambda (x) (+ x 1)) 10) ⇒

11

112CS 538 Spring 2002
©

We can bind values and functions to
global symbols using the define
function.
The general form is
(define id object)

id is not evaluated but object is. id
is bound to the value object evaluates
to.
For example,
(define pi 3.1415926535)

(define plus1
 (lambda (x) (+ x 1)))

(define pi*2 (* pi 2))

Once a symbol is defined, it evaluates
to the value it is bound to:
(plus1 12) ⇒ 13

113CS 538 Spring 2002
©

Since functions are frequently
defined, we may abbreviate
(define id
 (lambda (args) (body)))

as
(define (id args) (body))

Thus
(define (plus1 x) (+ x 1))

114CS 538 Spring 2002
©

Conditional Expressions in
Scheme

A predicate is a function that returns
a boolean value. By convention, in
Scheme, predicate names end with “?”
For example,
 number? symbol? equal?
 null? list?

In conditionals, #f is false, and
everything else, including #t , is true.
The if expression is
(if pred E1 E2)

First pred is evaluated. Depending on
its value (#f or not), either E1 or E2
is evaluated (but not both) and
returned as the value of the if
expression.

115CS 538 Spring 2002
©

For example,
 (if (= 1 (+ 0 1))

 'Yes

 'No
)

(define
 (fact n)

 (if (= n 0)

 1

 (* n (fact (- n 1)))
)
)

116CS 538 Spring 2002
©

Generalized Conditional
This is similar to a switch or case.
(cond
 (p1 e1)
 (p2 e2)
 ...
 (else en)
)

Each of the predicates (p1 , p2 , ...) is
evaluated until one is true (≠ #f).
Then the corresponding expression
(e1 , e2 , ...) is evaluated and returned
as the value of the cond. else acts
like a predicate that is always true.
Example:

(cond

 ((= a 1) 2)
 ((= a 2) 3)
 (else 4)
)

