
117CS 538 Spring 2002
©

Recursion in Scheme
Recursion is widely used in Scheme
and other functional programming
languages.
Rather than using a loop to step
through the elements of a list or
array, recursion breaks a problem on a
large data structure into a simpler
problem on a smaller data structure.
A good example of this approach is
the append function, which joins (or
appends) two lists into one larger list
containing all the elements of the
two input lists (in the correct order).
Note that cons is not append . cons
adds one element to the head of an
existing list.

118CS 538 Spring 2002
©

Thus
(cons '(a b) '(c d)) ⇒
 ((a b) c d)

(append '(a b) '(c d)) ⇒
 (a b c d)

The append function is predefined in
Scheme, as are many other useful
list-manipulating functions (consult
the Scheme definition for what’s
available).
It is instructive to define append
directly to see its recursive approach:
(define
 (append L1 L2)
 (if (null? L1)
 L2
 (cons (car L1)
 (append (cdr L1) L2))
)
)

119CS 538 Spring 2002
©

Let’s trace (append '(a b) '(c d))

Our definition is
(define
 (append L1 L2)
 (if (null? L1)
 L2
 (cons (car L1)
 (append (cdr L1) L2))
)
)

Now L1 = (a b) and L2 = (c d) .
(null? L1) is false, so we evaluate
(cons (car L1) (append (cdr L1) L2))
= (cons (car '(a b))

(append (cdr '(a b)) '(c d)))
= (cons 'a (append '(b) '(c d))

We need to evaluate
 (append '(b) '(c d))

In this call, L1 = (b) and L2 = (c d) .
L1 is not null, so we evaluate
(cons (car L1) (append (cdr L1) L2))
= (cons (car '(b))
 (append (cdr '(b)) '(c d)))

120CS 538 Spring 2002
©

= (cons 'b (append '() '(c d))

We need to evaluate
 (append '() '(c d))

In this call, L1 = () and L2 = (c d) .
L1 is null, so we return (c d) .
Therefore
(cons 'b (append '() '(c d)) =
(cons 'b '(c d)) = (b c d) =
(append '(b) '(c d))

Finally,
(append '(a b) '(c d)) =
(cons 'a (append '(b) '(c d)) =

(cons 'a '(b c d)) = (a b c d)

Note:
Source files for append , and other
Scheme examples, may be found in
~cs538-1/public/scheme/example1.scm,
~cs538-1/public/scheme/example2.scm,
etc.

121CS 538 Spring 2002
©

Reversing a List
Another useful list-manipulation
function is rev , which reverses the
members of a list. That is, the last
element becomes the first element,
the next-to-last element becomes the
second element, etc.
For example,
(rev '(1 2 3)) ⇒ (3 2 1)

The definition of rev is
straightforward:
(define (rev L)
 (if (null? L)
 L
 (append (rev (cdr L))
 (list (car L))
)
)
)

122CS 538 Spring 2002
©

As an example, consider
(rev '(1 2))

Here L = (1 2) . L is not null so we
evaluate
(append (rev (cdr L))
 (list (car L))) =
(append (rev (cdr '(1 2)))
 (list (car '(1 2)))) =

(append (rev '(2)) (list 1)) =
(append (rev '(2)) '(1))

We must evaluate (rev '(2))

Here L = (2) . L is not null so we
evaluate
(append (rev (cdr L))
 (list (car L))) =

(append (rev (cdr '(2)))
 (list (car '(2)))) =
(append (rev ())(list 2)) =
(append (rev ())'(2))

We must evaluate (rev '())

Here L = () . L is null so (rev '())=
()

123CS 538 Spring 2002
©

Thus (append (rev ())'(2)) =
(append () '(2)) = (2) = (rev '(2))

Finally, recall (rev '(1 2)) =
(append (rev '(2)) '(1)) =
(append '(2) '(1)) = (2 1)

As constructed, rev only reverses the
“top level” elements of a list. That is,
members of a list that themselves are
lists aren’t reversed.
For example,
 (rev '((1 2) (3 4))) =
 ((3 4) (1 2))

We can generalize rev to also reverse
list members that happen to be lists.
To do this, it will be convenient to use
Scheme’s let construct.

124CS 538 Spring 2002
©

The Let Construct
Scheme allows us to create local
names, bound to values, for use in an
expression.
The structure is
(let ((id1 val1) (id2 val2) ...)
 expr)

In this construct, val1 is evaluated
and bound to id1 , which will exist
only within this let expression. If
id1 is already defined (as a global or
parameter name) the existing
definition is hidden and the local
definition, bound to val1 , is used.
Then val2 is evaluated and bound to
id2 , Finally, expr is evaluated in a
scope that includes id1 , id2 , ...

125CS 538 Spring 2002
©

For example,
(let ((a 10) (b 20))

 (+ a b)) ⇒ 30

Using a let , the definition of
revall , a version of rev that
reverses all levels of a list, is easy:

(define (revall L)

 (if (null? L)
 L
 (let ((E (if (list? (car L))
 (revall (car L))
 (car L))))
 (append (revall (cdr L))
 (list E))
)
)
)

(revall '((1 2) (3 4))) ⇒
 ((4 3) (2 1))

126CS 538 Spring 2002
©

Subsets
Another good example of Scheme’s
recursive style of programming is
subset computation.
Given a list of distinct atoms, we
want to compute a list of all subsets
of the list values.
For example,
(subsets '(1 2 3)) ⇒

 (() (1) (2) (3) (1 2) (1 3)
 (2 3) (1 2 3))

The order of atoms and sublists is
unimportant, but all possible subsets
of the list values must be included.
Given Scheme’s recursive style of
programming, we need a recursive
definition of subsets.

127CS 538 Spring 2002
©

That is, if we have a list of all subsets
of n atoms, how do we extend this
list to one containing all subsets of
n+1 values?
First, we note that the number of
subsets of n+1 values is exactly twice
the number of subsets of n values.
For example,
(subsets '(1 2)) ⇒
(() (1) (2) (1 2)) , which

contains 4 subsets.
(subsets '(1 2 3)) contains 8
subsets (as we saw earlier).
Moreover, the extended list (of
subsets for n+1 values) is simply the
list of subsets for n values plus the
result of “distributing” the new value
into each of the original subsets.

128CS 538 Spring 2002
©

Thus (subsets '(1 2 3)) ⇒
(() (1) (2) (3) (1 2) (1 3)
 (2 3) (1 2 3)) =
(() (1) (2) (1 2)) plus

((3) (1 3) (2 3) (1 2 3))

This insight leads to a concise
program for subsets.
We will let (distrib L E) be a
function that “distributes” E into
each list in L.
For example,
(distrib ' (() (1) (2) (1 2)) 3) =

((3) (3 1) (3 2) (3 1 2))

(define (distrib L E)
 (if (null? L)
 ()
 (cons (cons E (car L))
 (distrib (cdr L) E))
)
)

129CS 538 Spring 2002
©

We will let (extend L E) extend a
list L by distributing element E
through L and then appending this
result to L.
For example,
(extend '(() (a)) 'b) ⇒

 (() (a) (b) (b a))

(define (extend L E)
 (append L (distrib L E))
)

Now subsets is easy:

(define (subsets L)

 (if (null? L)
 (list ())
 (extend (subsets (cdr L))

(car L))
)
)

