
130CS 538  Spring 2002
©

Data Structures in Scheme
In Scheme, lists and S-expressions are
basic. Arrays can be simulated using
lists, but access to elements “deep” in
the list can be slow (since a list is a
linked structure).
To access an element deep within a
list we can use:
• (list-tail L k)

This returns list L after removing the
first k  elements. For example,
(list-tail '(1 2 3 4 5)  2) ⇒
(3 4 5)

• (list-ref L k)

This returns the k-th element in L
(counting from 0). For example,
(list-ref '(1 2 3 4 5)  2) ⇒ 3



131CS 538  Spring 2002
©

Vectors in Scheme
Scheme provides a vector type that
directly implements one dimensional
arrays.
Literals are of the form #(  ... )

For example, #(1 2 3)  or
#(1 2.0 "three")

The function (vector? val)  tests
whether val  is a vector or not.
(vector? 'abc) ⇒ #f

(vector?  '(a b c)) ⇒ #f

(vector? #(a b c)) ⇒ #t

The function (vector v1 v2 ...)
evaluates v1 , v2 , ... and puts them
into a vector.
(vector 1 2 3) ⇒ #(1 2 3)



132CS 538  Spring 2002
©

The function (make-vector k val)
creates a vector composed of k copies
of val . Thus
(make-vector 4 (/ 1 2)) ⇒
  #(1/2  1/2  1/2  1/2)

The function (vector-ref vect k)
returns the k-th element of vect ,
starting at position 0. It is essentially
the same as vect[k] in C or Java. For
example,
(vector-ref #(2 4 6 8 10) 3) ⇒

8

The function
(vector-set! vect k val)  sets
the k-th element of vect , starting at
position 0, to be val . It is essentially
the same as vect[k]=val  in C or
Java. The value returned by the
function is unspecified. The suffix “!”
in set!  indicates that the function



133CS 538  Spring 2002
©

has a side-effect. For example,
(define v #(1 2 3 4 5))
(vector-set! v 2 0)
v ⇒ #(1 2 0 4 5)

Vectors aren’t lists (and lists aren’t
vectors).
Thus (car #(1 2 3))  doesn’t work.
There are conversion routines:
• (vector->list V)  converts vector

V to a list containing the same values
as V. For example,
(vector->list #(1 2 3)) ⇒
 (1 2 3)

• (list->vector L)  converts list L
to a vector containing the same
values as L. For example,
(list->vector '(1 2 3)) ⇒
#(1 2 3)



134CS 538  Spring 2002
©

•  In general Scheme names a
conversion function from type T to
type Q as T->Q . For example,
string->list  converts a string
into a list containing the characters
in the string.



135CS 538  Spring 2002
©

Records and Structs
In Scheme we can represent a record,
struct, or class object as an
association list of the form
((obj1  val1) (obj2  val2) ...)

In the association list, which is a list
of (object value) sublists, object
serves as a “key” to locate the desired
sublist.
For example, the association list
( (A 10)  (B  20) (C 30) )

serves the same role as
struct

  { int a = 10;
    int b = 20;
    int c = 30;}



136CS 538  Spring 2002
©

The predefined Scheme function
(assoc obj alist)

checks alist  (an association list) to
see if it contains a sublist with obj as
its head. If it does, the list starting
with obj  is returned; otherwise #f
(indicating failure) is returned.
For example,
(define L
  '( (a 10) (b 20) (c 30) ) )

(assoc 'a L) ⇒ (a 10)

(assoc 'b L) ⇒ (b 20)

(assoc 'x L) ⇒ #f



137CS 538  Spring 2002
©

We can use non-atomic objects as
keys too!
(define price-list

  '( ((bmw m3)     40270)

     ((bmw 740)    62070)

     ((jag  xj8)   55330)

     ((mb slk230)  40295)

   )

)

(assoc '(bmw 740) price-list)
⇒ ((bmw 740)  62070)



138CS 538  Spring 2002
©

Using assoc , we can easily define a
structure  function:
(structure key alist) will return
the value associated with key  in
alist ; in C or Java notation, it
returns alist.key .
(define
  (structure key alist)
  (if (assoc key alist)

(car (cdr (assoc key alist)))
    #f
  )
)

We can improve this function in two
ways:
•  The same call to assoc  is made

twice; we can save the value
computed by using a let  expression.

•  Often combinations of car  and cdr
are needed to extract a value. Scheme



139CS 538  Spring 2002
©

has a number of predefined functions
that combine several calls to car and
cdr  into one function. For example,
(caar x) ≡ (car (car x))

(cadr x) ≡ (car (cdr x))

(cdar x) ≡ (cdr (car x))

(cddr x) ≡ (cdr (cdr x))

Using these two insights we can now
define a better version of structure

(define
   (structure key alist)
   (let ((p (assoc key alist)))
     (if p
        (cadr p)
        #f
     )
   )
 )



140CS 538  Spring 2002
©

What does assoc do if more than one
sublist with the same key exists?
It returns the first sublist with a
matching key. In fact, this property
can be used to make a simple and fast
function that updates association
lists:
(define
 (set-structure key alist val)
 (cons (list key val) alist)
)



141CS 538  Spring 2002
©

If we want to be more space-
efficient, we can create a version that
updates the internal structure of an
association list, using set-cdr!
which changes the cdr value of a list:
(define
 (set-structure! key alist val)
 (let ( (p (assoc key alist)))
   (if p
     (begin
         (set-cdr! p (list val))
         alist
     )
     (cons (list key val) alist)
   )
 )
)



142CS 538  Spring 2002
©

Functions are First-class
Objects

Functions may be passed as
parameters, returned as the value of a
function call, stored in data objects,
etc.
This is a consequence of the fact that
(lambda (args) (body))

evaluates to a function just as
(+ 1 1)

evaluates to an integer.


