Data Structures in Scheme

n Scheme, lists and S-expressions are
pasic. Arrays can be simulated using
Ists, but access to elements “deep” In
the list can be slow (since a list Is a
linked structure).

To access an element deep within a
list we can use:

. (list-tail L k)
This returns list L after removing the
first k elements. For example,
(list-tail '(1 2 34 5) 2) L]
(345)

o (list-ref L k)
This returns the k-th element in L
(counting from 0). For example,
(list-ref'(12345) 2) L] 3

CS 538 Spring 200%° 130

Vectors In Scheme

Scheme provides a vector type that
directly implements one dimensional
arrays.

Literals are of the form #(...)

For example, #(123) or
#(1 2.0 "three")

The function (vector? val) tests
whether val IS a vector or not.

(vector? 'abc) (1 #f
(vector? ‘(a b c)) L1 #f
(vector? #(a b c)) (1 #t

The function (vector v1v2 ...)
evaluates vi1, v2, ... and puts them
Into a vector.

(vector 1 2 3) L1 #(123)

CS 538 Spring 200%°

131

The function (make-vector k val)
creates a vector composed of k copies
of val . Thus

(make-vector 4 (/ 1 2)) L]
#(1/2 12 1/2 1/2)

The function (vector-ref vect k)
returns the k-th element of vect |,
starting at position 0. It Is essentially
the same as vect[k] In C or Java. For

example,

(vector-ref #(2 4 6 8 10) 3) LI
8

The function

(vector-set! vect k val) sets

the k-th element of vect , starting at
position O, to be val . It Is essentially
the same as vect[k]=val In C or
Java. The value returned by the

function Is unspecified. The suffix
In set! Indicates that the function

CS 538 Spring 200%° 132

has a side-effect. For example,
(definev#(12345))
(vector-set! v 2 0)

v [#12045)
Vectors aren’t lists (and lists aren’t

vectors).

Thus (car #(1 2 3)) doesn’t work.
There are conversion routines:

. (vector->list V) converts vector

V to a list containing the same values
as V. For example,

(vector->list #(1 2 3)) L]
(12 3)
. (list->vector L) converts list L

to a vector containing the same
values as L. For example,
(list->vector '(1 2 3)) L]
#(1 2 3)

CS 538 Spring 200%° 133

. In general Scheme names a
conversion function from type T to
type Qas T->Q. For example,
string->list converts a string

Into alist containing the characters
In the string.

CS 538 Spring 200%° 134

Records and Structs

In Scheme we can represent a record,
struct, or class object as an
association list of the form

((obj1 vall) (obj2 val2) ...)

In the association list, which is a list
of (object value) sublists, object
serves as a “key” to locate the desired
sublist.

For example, the association list
((A 10) (B 20) (C 30))
serves the same role as

struct

{inta=10;
int b = 20;
Int ¢ = 30;}

CS 538 Spring 200%°

135

The predefined Scheme function
(assoc obj alist)

checks alist (an association list) to
see If It contains a sublist with obj as
Its head. If it does, the list starting
with obj Is returned; otherwise #f
(indicating failure) Is returned.

For example,
(define L

'((@a 10) (b 20) (c 30)))
(assoc 'a L)] (a 10)
(assoc 'b L)] (b 20)
(assoc 'x L) [#f

CS 538 Spring 200%° 136

We can use non-atomic objects as
keys too!
(define price-list
'((bmw m3) 40270)
((bmw 740) 62070)
(jag x)8) 55330)
((mb slk230) 40295)
)
)

(assoc '(bmw 740) price-list)
L1 ((bmw 740) 62070)

CS 538 Spring 200%°

137

Using assoc , we can easily define a
structure function:

(structure key alist) will return
the value associated with key In

alist ; in C or Java notation, it
returns alist.key

(define
(structure key alist)
(if (assoc key alist)

(car (cdr (assoc key alist)))
#i

)
)

We can improve this function in two
ways:

. The same call to assoc 1s made
twice; we can save the value
computed by using a let expression.

. Often combinations of car and cdr
are needed to extract a value. Scheme

CS 538 Spring 200%° 138

has a number of predefined functions
that combine several calls to car and
cdr into one function. For example,

(caar x) = (car (car x))
(cadr x) = (car (cdr x))
(cdar x) = (cdr (car X))
(cddr x) = (cdr (cdr x))

Using these two insights we can now

define a better version of structure
(define
(structure key alist)
(let ((p (assoc key alist)))
(if p
(cadr p)
#f

)
)
)

CS 538 Spring 200%° 139

What does assoc do If more than one
sublist with the same key exists?

It returns the first sublist with a
matching key. In fact, this property
can be used to make a simple and fast
function that updates association
lists:

(define

(set-structure key alist val)
(cons (list key val) alist)

)

CS 538 Spring 200%° 140

If we want to be more space-
efficient, we can create a version that

updates the internal structure of an
assoclation list, using set-cdr!

which changes the cdr value of a list:

(define
(set-structure! key alist val)

(let ((p (assoc key alist)))
(if p
(begin
(set-cdr! p (list val))
alist
)
(cons (list key val) alist)
)
)
)

CS 538 Spring 200%°

141

Functions are First-class
Objects

Functions may be passed as
parameters, returned as the value of a
function call, stored in data objects,
etc.

This Is a consequence of the fact that

(lambda (args) (body))
evaluates to a function just as
(+11)

evaluates to an integer.

CS 538 Spring 200%° 142

