
159CS 538 Spring 2002
©

Sharing vs. Copying
In languages without side-effects an
object can be copied by copying a
pointer (reference) to the object; a
complete new copy of the object isn’t
needed.
Hence in Scheme (define A B)
normally means

But, if side-effects are possible we
may need to force a physical copy of
an object or structure:

A B

160CS 538 Spring 2002
©

(define (copy obj)

 (if (pair? obj)

 (cons (copy (car obj))
(copy (cdr obj)))

 obj

)
)

For example,
(define A '(1 2))

(define B (cons A A))

B = ((1 2) 1 2)

A B

1

2 ()

161CS 538 Spring 2002
©

(set-car! (car B) 10)

B = ((10 2) 10 2)

(define C (cons (copy A) (copy A)))

A B

10

2 ()

C

10

2 ()

10

2 ()

162CS 538 Spring 2002
©

(set-car! (car C) 20)

C = ((20 2) 10 2)

Similar concerns apply to strings and
vectors, because their internal
structure can be changed.

C

20

2 ()

10

2 ()

163CS 538 Spring 2002
©

Shallow & Deep Copying
A copy operation that copies a
pointer (or reference) rather than the
object itself is a shallow copy.
For example, In Java,
Object O1 = new Object();

Object O2 = new Object();

O1 = O2; // shallow copy

If the structure within an object is
physically copied, the operation is a
deep copy.
In Java, for objects that support the
clone operation,
O1 = O2.clone(); // deep copy

Even in Java’s deep copy (via the
clone() operation), objects
referenced from within an object are
shallow copied. Thus given

164CS 538 Spring 2002
©

class List {

 int value;

 List next;

}

List L,M;

M = L.clone();

L.value and M.value are
independent, but L.next and M.next
refer to the same List object.
A complete deep copy, that copies all
objects linked directly or indirectly, is
expensive and tricky to implement.
(Consider a complete copy of a
circular linked list).

165CS 538 Spring 2002
©

Equality Checking in Scheme
In Scheme = is used to test for
numeric equality (including
comparison of different numeric
types). Non-numeric arguments cause
a run-time error. Thus
(= 1 1) ⇒ #t

(= 1 1.0) ⇒ #t

(= 1 2/2) ⇒ #t

(= 1 1+0.0i) ⇒ #t

166CS 538 Spring 2002
©

To compare non-numeric values, we
can use either:
pointer equivalence (do the two
operands point to the same address in
memory)
structural equivalence (do the two
operands point to structures with the
same size, shape and components,
even if they are in different memory
locations)
In general pointer equivalence is
faster but less accurate.

167CS 538 Spring 2002
©

Scheme implements both kinds of
equivalence tests.
(eqv? obj1 obj2)

This tests if obj1 and obj2 are the
exact same object. This works for
atoms and pointers to the same
structure.
(equal? obj1 obj2)

This tests if obj1 and obj2 are the
same, component by component. This
works for atoms, lists, vectors and
strings.

(eqv? 1 1) ⇒ #t

(eqv? 1 (+ 0 1)) ⇒ #t

(eqv? 1/2 (- 1 1/2)) ⇒ #t

(eqv? (cons 1 2) (cons 1 2)) ⇒
#f

(eqv? "abc" "abc") ⇒ #f

168CS 538 Spring 2002
©

(equal? 1 1) ⇒ #t

(equal? 1 (+ 0 1)) ⇒ #t

(equal? 1/2 (- 1 1/2)) ⇒ #t

(equal? (cons 1 2) (cons 1 2)) ⇒
#t

(equal? "abc" "abc") ⇒ #t

In general it is wise to use equal?
unless speed is a critical factor.

169CS 538 Spring 2002
©

I/O in Scheme
Scheme provides simple read and
write functions, directed to the
“standard in” and “standard out” files.
(read)

Reads a single Scheme object (an
atom, string, vector or list) from the
standard in file. No quoting is needed.
(write obj)

Writes a single object, obj , to the
standard out file.
(display obj)

Writes obj to the standard out file in
a more readable format. (Strings
aren’t quoted, and characters aren’t
escaped.)
(newline)

Forces a new line on standard out file.

170CS 538 Spring 2002
©

 Ports
Ports are Scheme objects that
interface with systems files. I/O to
files is normally done through a port
object bound to a system file.
(open-input-file "path to file")

This returns an input port associated
with the "path to file" string
(which is system dependent). A run-
time error is signalled if "path to
file" specifies an illegal or
inaccessible file.
(read port)

Reads a single Scheme object (an
atom, string, vector or list) from
port , which must be an input port
object.

171CS 538 Spring 2002
©

(eof-object? obj)

When the end of an input file is
reached, a special eof-object is
returned. eof-object? tests whether
an object is this special end-of-file
marker.
(open-output-file "path to file")

This returns an output port associated
with the "path to file" string
(which is system dependent). A run-
time error is signalled if "path to
file" specifies an illegal or
inaccessible file.
(write obj port)

Writes a single object, obj , to the
output port specified by port .

172CS 538 Spring 2002
©

(display obj port)

Writes obj to the output port
specified by port . display uses a more
readable format than write does.
(Strings aren’t quoted, and characters
aren’t escaped.)
(close-input-port port)

This closes the input port specified by
port .
(close-output-port port)

This closes the output port specified
by port .

173CS 538 Spring 2002
©

Example—Reading & Echoing a
File

We will iterate through a file, reading
and echoing its contents. We need a
good way to do iteration; recursion is
neither natural nor efficient here.
Scheme provides a nice generalization
of the let expression that is similar
to C’s for loop.
(let X ((id1 val1) (id2 val2) ...)
 ...
 (X v1 v2 ...)
)

A name for the let (X in the example)
is provided. As usual, val1 is
evaluated and bound to id1 , val2 is
evaluated and bound to id2 , etc. In
the body of the let, the let may be
“called” (using its name) with a fresh

174CS 538 Spring 2002
©

set of values for the let variables.
Thus (X v1 v2 ...) starts the next
iteration of the let with id1 bound to
v1 , id2 , bound to v2 , etc.
The calls look like recursion, but they
are implemented as loop iterations.
For example, in
(let loop ((x 1) (sum 0))

 (if (<= x 10)

 (loop (+ x 1) (+ sum x))

 sum

)

)

we sum the values of x from 1 to 10.
Compare it to
for (x=1,sum=0; x <= 10;
 sum+=x,x+=1)

 {}

175CS 538 Spring 2002
©

Now a function to read and echo a
file is straightforward:
(define (echo filename)
 (let (

(p (open-input-file filename)))
 (let loop ((obj (read p)))
 (if (eof-object? obj)
 #t ;normal termination
 (begin
 (write obj)
 (newline)
 (loop (read p))
)
)
)
)
)

176CS 538 Spring 2002
©

We can create an alternative to echo
that uses
(call-with-input-file
 filename function)

This function opens filename ,
creates an input port from it, and
then calls function with that port as
an argument:
(define (echo2 filename)
 (call-with-input-file filename
 (lambda(port)

(let loop ((obj (read port)))
 (if (eof-object? obj)
 #t
 (begin
 (write obj)
 (newline)
 (loop (read port))
)
)
)
)
))

