
191CS 538 Spring 2002
©

Continuations in Scheme
Scheme provides a built-in
mechanism for creating
continuations. It has a long name:
call-with-current-continuation

This name is usually abbreviated as
call/cc

(perhaps using define).
call/cc takes a single function as its
argument. That function also takes a
single argument. That is, we use
call/cc as
(call/cc funct) where
funct ≡ (lambda (con) (body))

call/cc calls the function that it is
given with the “current continuation”
as the function’s argument.

192CS 538 Spring 2002
©

Current Continuation
What is the current continuation?
It is itself a function of one
argument. The current continuation
function represents the execution
context within which the call/cc
appears. The argument to the
continuation is a value to be
substituted as the value of call/cc
in that execution context.
For example, given
(+ (fct n) 3)

the current continuation for (fct n)
is (lambda (x) (+ x 3)

Given (* 2 (+ (fct z) 10))

the current continuation for (fct z)
is (lambda (m) (* 2 (+ m 10))

193CS 538 Spring 2002
©

To use call/cc to grab a
continuation in (say) (+ (fct n) 3)
we make (fct n) the body of a
function of one argument. Let’s call
that argument return . We therefore
create
(lambda (return) (fct n))

Then
(call/cc
 (lambda (return) (fct n)))

binds the current continuation to
return and executes (fct n) .
We can ignore the current
continuation bound to return and
do a normal return
or
we can use return to force a return
to the calling context of the
call/cc .

194CS 538 Spring 2002
©

The call (return value) forces
value to be returned as the value of
call/cc in its context of call.
Example:

(define (g con) (con 5))

Now during evaluation no divide by
zero error occurs. Rather, when
(g return) is called, 5 is passed to
con , which is bound to return .
Therefore 5 is used as the value of the
call to call/cc , and 50 is computed.

(* (call/cc (lambda(return)
 (/ (g return) 0))) 10)

return

195CS 538 Spring 2002
©

Continuations are Just
Functions

Continuations may be saved in
variables or data structures and called
in the future to “reactive” a
completed or suspended computation.
(define CC ())
(define (F)
 (let (
 (v (call/cc
 (lambda(here)
 (set! CC here)
 1))))

(display "The ans is: ")
 (display v)

(newline)
))

This displays The ans is: 1

At any time in the future, (CC 10)
will display The ans is: 10

196CS 538 Spring 2002
©

List Multiplication Revisited
We can use call/cc to reimplement
the original *list to force an
immediate return of 0 (much like a
throw in Java):
(define (*listc L return)
 (cond
 ((null? L) 1)
 ((= 0 (car L)) (return 0))
 (else (* (car L)

(*listc (cdr L) return)))
))

(define (*list L)
 (call/cc
 (lambda (return)
 (*listc L return)
)))

A 0 in L forces a call of (return 0)
which makes 0 the value of call/cc .

197CS 538 Spring 2002
©

Interactive Replacement of
Error Values

Using continuations, we can also redo
*listE so that zeroes can be replaced
interactively! Multiple zeroes (in both
original and replacement values) are
correctly handled.
(define (*list L)
 (let (
 (V (call/cc
 (lambda (here)
 (*liste L here)))))
 (if (number? V)
 V
 (begin
 (display
 "Enter new value for 0")
 (newline) (newline)
 (V (read))
)
)
)
)

198CS 538 Spring 2002
©

(define (*liste L return)
 (if (null? L)
 1
 (let loop ((value (car L)))
 (if (= 0 value)
 (loop
 (call/cc

(lambda (x) (return x))))
 (* value
 (*liste (cdr L) return))
)
)
)
)

If a zero is seen, *liste passes back
to the caller (via return) a
continuation that will set the next
value of value . This value is checked,
so if it is itself zero, a substitute is
requested. Each occurrence of zero
forces a return to the caller for a
substitute value.

199CS 538 Spring 2002
©

Implementing Coroutines with
call/cc

Coroutines are a very handy
generalization of subroutines. A
coroutine may suspend its execution
and later resume from the point of
suspension. Unlike subroutines,
coroutines do no have to complete
their execution before they return.
Coroutines are useful for
computation of long or infinite
streams of data, where we wish to
compute some data, use it, compute
additional data, use it, etc.
Subroutines aren’t always able to
handle this, as we may need to save a
lot of internal state to resume with
the correct next value.

