Producer/Consumer using
Coroutines

The example we will use is one of a
consumer of a potentially infinite
stream of data. The next integer In
the stream (represented as an
unbounded list) is read. Call this
value n. Then the next n integers are
read and summed together. The
answer Is printed, and the user Is
asked whether another sum Is
required. Since we don’t know in
advance how many integers will be
needed, we’ll use a coroutine to
produce the data list in segments,
requesting another segment as
necessary.

CS 538 Spring 200%°

200

(define (consumer)

(next 0) , reset next function
(let loop ((data (moredata)))
(let (

(sum+restoflist
(sum-n-elems (car data)
(cons O (cdr data)))))

(display (car sum+restoflist))
(newline)
(display "more? ")
(if (equal? (read) 'y)
(if (=1
(length sum-+restoflist))
(loop (moredata))
(loop (cdr sum-+restoflist))

)

#t ; Normal completion

)
)
)
)

CS 538 Spring 200%° 201

Next, we'll consider sum-n-elems |
which adds the first element of list (a
running sum) to the next n elements
on the list. We’ll use moredata to

extend the data list as needed.

(define (sum-n-elems n list)
(cond
((=0n) list)
((null? (cdr list))

(sum-n-elems n
(cons (car list)(moredata))))

(else
(sum-n-elems (- n 1)
(cons (+ (car list)
(cadr list))

(cddr list))))

CS 538 Spring 200%° 202

The function moredata Is called
whenever we need more data. Initially
a producer function is called to get
the initial segment of data. producer
actually returns the next data
segment plus a continuation (stored
IN producer-cc) used to resume
execution of producer when the
next data segment Is required.

CS 538 Spring 200%° 203

(define moredata
(let ((producer-cc ()))
(lambda ()

(let (

(data+cont
(if (null? producer-cc)

(call/cc (Jambda (here)
(producer here)))

(call/cc (Jambda (here
(produger-cc here)))

)
)

(set! producer-cc
(cdr data+cont))

(car data+cont)

)
)
)
)

CS 538 Spring 200%°

204

Function (next z) returns the next z
Integers in an infinite sequence that
starts at 1. A value z=0 Is a special
flag indicating that the sequence
should be reset to start at 1.

(define next

(let ((11))
(lambda (z)
(if (=0 2)
(set!il)
(let loop

((cnt z) (val i) (ints ()))
(if (> cnt 0)

(loop (- cnt 1)
(+ val 1)
(append ints
(list val)))

(begin
(set! i val)
Ints
)
)
)
))))

CS 538 Spring 200%° 205

The function producer generates an
Infinite sequence of integers

(1,2,3,...). It suspends every 5/10/15/
25 elements and returns control to
moredata .

(define (producer initial-return)

(let loop
((return initial-return))

(set! return
(call/[c (lambda (here)

(return (cons (next 5)
here)))))
(set! return

(call/|:c (lambda (here)

(return (cons (next 10)
here)))))
(set! return

(caII/Fc (lambda (here)

(retyrn (cons (next 15)
here)))))
(loop

(cau/rc (lambda (here)

(return (cons (next 25)

here)))))

))

CS 538 Spring 200%° 206

Reading Assignment

. MULTILISP: a language for concurrent
symbolic computation,
by Robert H. Halstead
(linked from class web page)

CS 538 Spring 2002 007

