
208CS 538 Spring 2002
©

Lazy Evaluation
Lazy evaluation is sometimes called
“call by need.” We do an evaluation
when a value is used; not when it is
defined.
Scheme provides for lazy evaluation:
(delay expression)

Evaluation of expression is delayed.
The call returns a “promise” that is
essentially a lambda expression.
(force promise)

A promise, created by a call to delay ,
is evaluated. If the promise has
already been evaluated, the value
computed by the first call to force is
reused.

209CS 538 Spring 2002
©

Example:
Though and is predefined, writing a
correct implementation for it is a bit
tricky.
The obvious program
(define (and A B)

 (if A

 B

 #f

)

)

is incorrect since B is always
evaluated whether it is needed or not.
In a call like
(and (not (= i 0)) (> (/ j i) 10))

unnecessary evaluation might be
fatal.

210CS 538 Spring 2002
©

An argument to a function is strict if
it is always used. Non-strict
arguments may cause failure if
evaluated unnecessarily.
With lazy evaluation, we can define a
more robust and function:
(define (and A B)

 (if A

 (force B)

 #f

)

)

This is called as:
(and (not (= i 0))
 (delay (> (/ j i) 10)))

Note that making the programmer
remember to add a call to delay is
unappealing.

211CS 538 Spring 2002
©

Delayed evaluation also allows us a
neat implementation of suspensions.
The following definition of an infinite
list of integers clearly fails
(define (inflist i)

 (cons i (inflist (+ i 1))))

But with use of delays we get the
desired effect in finite time:
(define (inflist i)
 (cons i
 (delay (inflist (+ i 1)))))

Now a call like (inflist 1) creates

1 promise for
(inflist 2)

212CS 538 Spring 2002
©

We need to slightly modify how we
explore suspended infinite lists. We
can’t redefine car and cdr as these
are far too fundamental to tamper
with.
Instead we’ll define head and tail to
do much the same job:
(define head car)

(define (tail L)

 (force (cdr L)))

head looks at car values which are
fully evaluated.
tail forces one level of evaluation of
a delayed cdr and saves the
evaluated value in place of the
suspension (promise).

213CS 538 Spring 2002
©

Given
(define IL (inflist 1))

(head (tail IL)) returns 2 and
expands IL into

2 promise for
(inflist 3)

1

214CS 538 Spring 2002
©

Exploiting Parallelism
Conventional procedural
programming languages are difficult
to compile for multiprocessors.
Frequent assignments make it
difficult to find independent
computations.
Consider (in Fortran):

 do 10 I = 1,1000
 X(I) = 0
 A(I) = A(I+1)+1
 B(I) = B(I-1)-1
 C(I) = (C(I-2) + C(I+2))/2
10 continue

This loop defines 1000 values for
arrays X, A, B and C.

215CS 538 Spring 2002
©

Which computations can be done in
parallel, partitioning parts of an array
to several processors, each operating
independently?
• X(I) = 0

Assignments to X can be readily
parallelized.

• A(I) = A(I+1)+1

Note that each computation of A(I)
uses an A(I+1) value that is yet to
be changed. Thus a whole array of
new A values can be computed from
an array of “old” A values in parallel.

• B(I) = B(I-1)-1

This is less obvious. Each B(I) uses
B(I-1) which is defined in terms of
B(I-2) , etc. Ultimately all new B
values depend only on B(0) and I .
That is, B(I) = B(0) - I . So this

216CS 538 Spring 2002
©

computation can be parallelized, but
it takes a fair amount of insight to
realize it.

• C(I) = (C(I-2) + C(I+2))/2

It is clear that even and odd elements
of C don’t interact. Hence two
processors could compute even and
odd elements of C in parallel. Beyond
this, since both earlier and later C
values are used in each computation
of an element, no further means of
parallel evaluation is evident. Serial
evaluation will probably be needed
for even or odd values.

217CS 538 Spring 2002
©

Exploiting Parallelism in
Scheme

Assume we have a shared-memory
multiprocessor. We might be able to
assign different processors to
evaluate various independent
subexpressions.
For example, consider
(map (lambda(x) (* 2 x))
 '(1 2 3 4 5))
We might assign a processor to each
list element and compute the lambda
function on each concurrently:

1 2 3 4 5

2 4 6 8 10

Processor 1 Processor 5...

218CS 538 Spring 2002
©

How is Parallelism Found?
There are two approaches:
• We can use a “smart” compiler that is

able to find parallelism in existing
programs written in standard serial
programming languages.

• We can add features to an existing
programming language that allows a
programmer to show where parallel
evaluation is desired.

219CS 538 Spring 2002
©

Concurrentization
Concurrentization (often called
parallelization) is process of
automatically finding potential
concurrent execution in a serial
program.
Automatically finding current
execution is complicated by a number
of factors:
• Data Dependence

Not all expressions are independent. We
may need to delay evaluation of an
operator or subprogram until its
operands are available.
Thus in
(+ (* x y) (* y z))

we can’t start the addition until both
multiplications are done.

220CS 538 Spring 2002
©

• Control Dependence
Not all expressions need be (or should
be) evaluated.
In
(if (= a 0)

0

 (/ b a))

we don’t want to do the division until
we know a ≠ 0.

• Side Effects
If one expression can write a value that
another expression might read, we
probably will need to serialize their
execution.
Consider
(define rand!
 (let ((seed 99))
 (lambda ()
 (set! seed
 (mod (* seed 1001) 101101))
 seed
)))

221CS 538 Spring 2002
©

Now in
(+ (f (rand!)) (g (rand!)))

we can’t evaluate (f (rand!)) and
(g (rand!)) in parallel, because of
the side effect of set! in rand! . In
fact if we did, f and g might see exactly
the same “random” number! (Why?)

• Granularity
Evaluating an expression concurrently
has an overhead (to setup a concurrent
computation). Evaluating some very
simple expressions (like (car x) or
(+ x 1)) in parallel isn’t worth the
overhead cost.
Estimating where the “break even”
threshold is may be tricky.

222CS 538 Spring 2002
©

Utility of Concurrentization
Concurrentization has been most
successful in engineering and
scientific programs that are very
regular in structure, evaluating large
multidimensional arrays in simple
nested loops. Many very complex
simulations (weather, fluid dynamics,
astrophysics) are run on
multiprocessors after extensive
concurrentization.
Concurrentization has been far less
successful on non-scientific programs
that don’t use large arrays
manipulated in nested for loops. A
compiler, for example, is difficult to
run (in parallel) on a multiprocessor.

