Lazy Evaluation

Lazy evaluation is sometimes called
“call by need.” We do an evaluation
when a value is used; not when it is
defined.

Scheme provides for lazy evaluation:
(delay expression)

Evaluation of expression is delayed.
The call returns a “promise” that is
essentially a lambda expression.

(force promise)

A promise, created by a call to delay |,
is evaluated. If the promise has
already been evaluated, the value
computed by the first call to force is
reused.

S 538 Spring 2002 208

An argument to a function is strict if
it is always used. Non-strict
arguments may cause failure if
evaluated unnecessarily.

With lazy evaluation, we can define a
more robust and function:
(define (and A B)
(if A
(force B)
#

)
)
This is called as:
(and (not (=i 0))

(delay (> (/1) 10)))

Note that making the programmer
remember to add a call to delay is
unappealing.

€S 538 Spring 2008 210

Example:

Though and is predefined, writing a
correct implementation for it is a bit
tricky.
The obvious program
(define (and A B)
(if A
B
#f

)
)
IS incorrect since B is always
evaluated whether it is needed or not.
In a call like
(and (not (=i 0)) (> (/ j i) 10)
unnecessary evaluation might be
fatal.

€S 538 Spring 2007 209

Delayed evaluation also allows us a
neat implementation of suspensions.

The following definition of an infinite
list of integers clearly fails
(define (inflist i)

(cons i (inflist (+ i 1))))
But with use of delays we get the
desired effect in finite time:
(define (inflist i)

(consi
(delay (inflist (+i 1)))))
Now a call like (inflist 1) creates
AN
N
1 promise for
(inflist 2)

S 538 Spring 200 211

We need to slightly modify how we
explore suspended infinite lists. We
can’'t redefine car and cdr as these
are far too fundamental to tamper

with.

Instead we’ll define head and tail to
do much the same job:
(define head car)
(define (tail L)
(force (cdr L)))

head looks at car values which are
fully evaluated.

tail forces one level of evaluation of
a delayed cdr and saves the
evaluated value in place of the
suspension (promise).

S 538 Spring 2002 212

Exploiting Parallelism

Conventional procedural
programming languages are difficult
to compile for multiprocessors.

Frequent assignments make it
difficult to find independent
computations.

Consider (in Fortran):

do 10 1=1,1000

X({1)=0

A() = A(I+1)+1

B(l) = B(l-1)-1

C(l) = (C(I-2) + C(I+2))/2
10 continue

This loop defines 1000 values for
arrays X, A, Band C.

€S 538 Spring 2002 214

Given
(define IL (inflist 1))

(head (tail IL))
expands IL into

returns 2 and

NI
2 promise for
(inflist 3)

€S 538 Spring 2007

213

Which computations can be done in

parallel, partitioning parts of an array
to several processors, each operating
independently?

- X()=0
Assignments to X can be readily
parallelized.

< A(l) = A(+1)+1
Note that each computation of A(l)
uses an A(l+1) value that is yet to
be changed. Thus a whole array of
new A values can be computed from
an array of “old” A values in parallel.

. B(l) = B(I-1)-1
This is less obvious. Each B(l) uses
B(I-1) which is defined in terms of
B(I-2) , etc. Ultimately all new B
values depend only on B(0) and I .
That is, B() =B(0) - 1. So this

S 538 Spring 200

215

computation can be parallelized, but
it takes a fair amount of insight to
realize it.

. C(I) = (C(I-2) + C(1+2))/2
It is clear that even and odd elements
of Cdon’t interact. Hence two
processors could compute even and
odd elements of Cin parallel. Beyond
this, since both earlier and later C
values are used in each computation
of an element, no further means of
parallel evaluation is evident. Serial
evaluation will probably be needed
for even or odd values.

S 538 Spring 2002 216

How is Parallelism Found?

There are two approaches:

- We can use a “smart” compiler that is
able to find parallelism in existing
programs written in standard serial
programming languages.

. We can add features to an existing
programming language that allows a
programmer to show where parallel
evaluation is desired.

€S 538 Spring 2008 218

Exploiting Parallelism in
Scheme

Assume we have a shared-memory
multiprocessor. We might be able to
assign different processors to
evaluate various independent
subexpressions.
For example, consider
(map (lambda(x) (* 2 x))

'12345))
We might assign a processor to each
list element and compute the lambda
function on each concurrently:

Proctissor 1 Procdssor 5
H 1

2[4 e]

€S 538 Spring 2007

217

Concurrentization

Concurrentization (often called
parallelization) is process of
automatically finding potential
concurrent execution in a serial
program.

Automatically finding current
execution is complicated by a number
of factors:

. Data Dependence

Not all expressions are independent. We
may need to delay evaluation of an
operator or subprogram until its
operands are available.

Thus in

(+(*xy) (*y2)

we can't start the addition until both
multiplications are done.

S 538 Spring 200

219

. Control Dependence

Not all expressions need be (or should
be) evaluated.

In

(if (= a 0)
0

(/ ba))

we don’t want to do the division until
we know a # 0.

. Side Effects

If one expression can write a value that
another expression might read, we
probably will need to serialize their
execution.

Consider
(define rand!
(let ((seed 99))
(lambda ()
(set! seed
(mod (* seed 1001) 101101))
seed

))

S 538 Spring 2002

220

Utility of Concurrentization

Concurrentization has been most
successful in engineering and
scientific programs that are very
regular in structure, evaluating large
multidimensional arrays in simple
nested loops. Many very complex
simulations (weather, fluid dynamics,
astrophysics) are run on
multiprocessors after extensive
concurrentization.

Concurrentization has been far less
successful on non-scientific programs
that don’t use large arrays
manipulated in nested for loops. A
compiler, for example, is difficult to
run (in parallel) on a multiprocessor.

€S 538 Spring 2002

Now in

(+ (f (rand!)) (g (rand!)))

we can't evaluate (f (rand!)) and
(g (rand!)) in parallel, because of

the side effect of set! inrand! .In
fact if we did, f and g might see exactly
the same “random” number! (Why?)

. Granularity

Evaluating an expression concurrently
has an overhead (to setup a concurrent
computation). Evaluating some very
simple expressions (like (car x) or
(+x1)) in parallel isn't worth the
overhead cost.

Estimating where the “break even”
threshold is may be tricky.

€S 538 Spring 2007

221

