Concurrentization within
Processors

Concurrentization is used extensively
within many modern uniprocessors.
Pentium and PowerPC processors
routinely execute several instructions
in parallel if they are independent
(e.g., read and write distinct
registers). This are superscalar
processors.

These processors also routinely
speculate on execution paths,
“guessing” that a branch will (or
won’t) be taken even before the
branch is executed! This allows for
more concurrent execution than if
strictly “in order” execution is done.
These processors are called “out of
order” processors.

S 538 Spring 2002

223

Reading Assignment

. Sethi: Chapters 8 and 9

. Introduction to Standard ML
(linked from class web page)

. Scott: Section 7.1 and 7.2

S 538 Spring 2007

225

Adding Parallel Features to
Programming Languages.

It is common to take an existing serial
programming language and add
features that support concurrent or
parallel execution. For example
versions for Fortran (like HPF—High
Performance Fortran) add a parallel
do loop that executes individual
iterations in parallel.

Java supports threads, which may be
executed in parallel. Synchronization
and mutual exclusion are provided to
avoid unintended interactions.

€S 538 Spring 2007

224

Multilisp

Multilisp is a version of Scheme
augmented with three parallel
evaluation mechanisms:

. Pcall
Arguments to a call are evaluated in
parallel.

. Future
Evaluation of an expression starts
immediately. Rather than waiting for
completion of the computation, a
“future” is returned. This future will
eventually transform itself into the
result value (when the computation
completes)

. Delay
Evaluation is delayed until the result
value is really needed.

S 538 Spring 200

226

The Pcall Mechanism

Pcall is an extension to Scheme’s
function call mechanism that causes
the function and its arguments to be
all computed in parallel.

Thus

(pcall F XY 2)

causes F, X, Y and z to all be
evaluated in parallel. When all
evaluations are done, F is called with
X, Y and Z as its parameters (just as in
ordinary Scheme).

Compare

(+(XY)(*Y2)

with

(pcall + (* X Y) (* Y 2))

S 538 Spring 2002

227

We start with one call that uses the
whole tree. This splits into two
parallel calls, one operating on

((1.2).(3.49)
and the other operating on

((5.6).(7.8)

Each of these calls splits into 2 calls,
and finally we have 8 independent
calls, each operating on the values 1
to 8.

€S 538 Spring 2002

229

It may not look like pcall can give
you that much parallel execution, but
in the context of recursive definitions,
the effect can be dramatic.

Consider treemap , a version of map
that operates on binary trees
(S-expressions).
(define (treemap fct tree)
(if (pair? tree)
(pcall cons
(treemap fct (car tree))
(treemap fct (cdr tree))
)
(fct tree)
)
Look at the execution of treemap on

the tree
(1.2).(3.4).
((5.6).(7.8))

€S 538 Spring 2007

228

Futures

Evaluation of an expression as a
future is the most interesting feature
of Multilisp.

The call
(future expr)

begins the evaluation of expr . But
rather than waiting for expr ’s
evaluation to complete, the call to
future returns immediately with a
new kind of data object—a future.
This future is actually an “IOU.” When
you try to use the value of the future,
the computation of expr may or may
not be completed. If it is, you see the
value computed instead of the
future—it automatically transforms
itself. Thus evaluation of expr
appears instantaneous.

S 538 Spring 200

230

If the computation of expr is not yet
completed, you are forced to wait
until computation is completed. Then
you may use the value and resume
execution. But this is exactly what
ordinary evaluation does anyway—you
begin evaluation of expr and wait
until evaluation completes and
returns a value to you!

S 538 Spring 2002

231

Now consider fastmap , a version of
map that uses futures:

(define (fastmap f L)
(if (null? L)
0

(cons
(future (f (car L)))
) (fastmap f (cdr L))

)
)

Now look at the call

(fastmap slow-function long-list)

We will exploit a useful aspect of
futures—they can be cons’ed together
without delay, even if the
computation isn’'t completed yet.

Why? Well a cons just stores a pair
of pointers, and it really doesn’t
matter what the pointers reference (a
future or an actual result value).

S 538 Spring 2007

233

To see the usefulness of futures,
consider the usual definition of
Scheme’s map function:
(define (map f L)

(if (null? L)

0
(cons (f (car L))
(map f (cdr L)))
)

)
If we have a call

(map slow-function long-list)

where slow-function executes
slowly and long-list is a large data
structure, we can expect to wait quite
a while for computation of the result
list to complete.

€S 538 Spring 2007

232

The call to fastmap can actually
return before any of the call to slow-
function have completed:

futurel

future

future3

Eventually all the futures
automatically transform themselves
into data values:

answerl

answer2

answer3

S 538 Spring 200

234

Note that pcall can be implemented
using futures.

That is, instead of
(pcall F XY 2)

we Ccan use

((future F) (future X) (future Y)
(future 2))

In fact the latter version is actually
more parallel—execution of F can
begin even if all the parameters aren’t
completely evaluated.

S 538 Spring 2002

235

