
13CS 538 Spring 2002
©

3. Prolog (Programming in Logic)
Programs are Facts and Rules.
Programmers are concerned with
definition, not execution.
Execution order is automatically
determined.

4. Pizza
Extends a popular Object-oriented
language, Java, to include
• Parametric polymorphism (similar to

C++’s templates)

• First-class functional objects

• Algebraic data types, including
patterns.

14CS 538 Spring 2002
©

5. Python
A simple, efficient scripting language
that quickly builds new programs out
of existing applications and libraries.
Cleanly includes objects.
Scales nicely into larger applications.

15CS 538 Spring 2002
©

Evolution of Programming
Languages

In the beginning, ...
programs were written in absolute
machine code—a sequence of bits
that encode machine instructions.
Example:

34020005
0000000c
3c011001
ac220000

This form of programming is
• Very detailed

• Very tedious

• Very error-prone

• Very machine specific

16CS 538 Spring 2002
©

Symbolic Assemblers
Allow use of symbols for operation
codes and labels.
Example:

li $v0,5
syscall
sw $v0,a

Far more readable, but still very
detailed, tedious and machine-
specific.
Types are machine types.
Control structures are conditional
branches.
Subprograms are blocks of code called
via a “subroutine branch” instruction.
All labels are global.

17CS 538 Spring 2002
©

Fortran (Formula Translator)
Example:

 do 10 i=1,100

10 a(i)=0

Developed in the mid-50s.
A major step forward:
• Programming became more “problem

oriented” and less “machine oriented.”
• Notions of control structures (ifs and

do loops) were introduced.
• Subprograms, calls, and parameters

were made available.
• Notions of machine independence were

introduced.
• Has evolved into more modern variants,

including Fortran 77, Fortran 90 and
HPF (High Performance Fortran).

18CS 538 Spring 2002
©

Cobol (Common Business
Oriented Language)

Example:
multiply i by 3 giving j.
move j to k.
write line1 after advancing
1 lines.

Developed in the early 60s.
The first widely-standardized
programming language,
Once very widely used in the
commercial world; still important.
Wordy in structure; designed for non-
scientific users.
Raised the issue of who should
program and how important
readability and maintainability are.

19CS 538 Spring 2002
©

Algol 60 (Algorithmic Language)
Example:

real procedure cheb(x,n);
value x,n;
real x; integer n;
cheb := if n = 0 then 1
 else if n = 1 then x
 else 2 × x ×
 cheb(x,n-1)-cheb(x,n-2);

Developed about 1960.
Direct precursor of Pascal, C, C++ and
Java.
Introduced many ideas now in wide
use:
• Blocks with local declarations and

scopes.

• Nested declarations and control
structures.

20CS 538 Spring 2002
©

• Parameter passing

• Automatic recursion.
But,
• I/O wasn’t standardized.

• IBM promoted Fortran and PL/I.

21CS 538 Spring 2002
©

Lisp (List Processing Language)
Example:

((lambda (x) (* x x)) 10)

Developed in the early 60s.
A radical departure from earlier
programming languages.
Programs and data are represented in
a uniform list format.
Types are a property of data values,
not variables or parameters.
A program can build and run new
functions as it executes.
Data values were not fixed in size.
Memory management was automatic.
A formal semantics was developed to
define precisely what a program
means.

22CS 538 Spring 2002
©

Simula 67 (Simulation Algol)
Example:

Class Rectangle (Width, Height);
Real Width, Height;
Boolean Procedure IsSquare;
 IsSquare := Width=Height;
End of Rectangle;

Developed about 1967.
Introduced the notion of a class (for
simulation purposes).
Included objects, a garbage collector,
and notions of extending a class.
C++ was originally C with classes (as
Simula was Algol with classes).

23CS 538 Spring 2002
©

C and C++
C was developed in the early 70’s;
C++ in the mid-80s.
These languages have a concise,
expressive syntax; they generate high
quality code sufficient for
performance-critical applications.
C, along with Unix, provided the
viability of platform-independent
languages and applications.
C and C++ allow programmers a great
deal of freedom in bending and
breaking rules.
Raise the issue of whether one
language can span both novice and
expert programmers.

24CS 538 Spring 2002
©

Interesting issue—if most statements
and expressions are meaningful, can
errors be readily detected?

if (a=b)

 a=0;

else a = 1;

25CS 538 Spring 2002
©

Java
Developed in the late 90s.
Cleaner object-oriented language
than C++.
Introduced notions of dynamic
loading of class definitions across the
Web.
Much stronger emphasis on secure
execution and detection of run-time
errors.
Extended notions of platform
independence to system
independence.

