Another Example of Futures

The following function, partiton
will take a list and a data value
(called pivot). partition will
partition the list into two sublists:

(a) Those elements < pivot

(b) Those elements > pivot
(define (partition pivot L)
(if (null? L)
(cons () 0)
(let ((tail-part
(partition pivot (cdr L))))
(if (<= (car L) pivot)
(cons
(cons (car L) (car tail-part))
(cdr tail-part))
(cons
(car tail-part))
(cons (car L) (cdr tail-part))
)
)))

S 538 Spring 2002

236

(define (partition pivot L)
(if (null? L)

(cons () ()

(let ((tail-part

|(partition pivot (cdr L))))

(if (<= (car L) pivot)
(cons
(cons (car L) (car tail-part))
(cdr tail-part))
(cons
(car tail-part))
(cons (car L) (cdr tail-part))

)
)))

But this one change isn’t enough! We
soon access the car and cdr of
tail-part ~, which forces us to wait
for its computation to complete. To
avoid this delay, we can place the
four reference to car or cdr of
tail-part into futures too:

€S 538 Spring 2002

238

We want to add futures to partition,
but where?

It makes sense to use a future when a
computation may be lengthy and we
may not need to use the value
computed immediately.

What computation fits that pattern?

The computation of tail-part . We'll
mark it in a blue box to show we plan
to evaluate it using a future:

€S 538 Spring 2007

237

(define (partition pivot L)
(if (null? L)
(cons () ()

(let ((tail-part
(partition pivot (cdr L))))

(if (<= (car L) pivot)
(cons

(cons (car L) (ca} tail-part))

|(cdr tail-part)) [

(cons

[car tail-part))
(cons (car L) (cd tail-part))

S 538 Spring 200

239

Now we can build the initial part of
the partitioned list (that involving
pivot and (car L)
the recursive call of partition
which completes the rest of the list.

For example,
(partition 17 '(53 8 ...))

creates a future (call it futurel) to
compute

(partition 17 (3 8 ...))

It also creates future2 to compute
(car tail-part) and future3 to
compute (cdr tail-part) . The call

builds
Pl‘ future3
future2

independently of

S 538 Spring 2002

240

4. Pattern-directed Programming

funlen(]) =0
| len(a::b) = 1+len(b);

5. Exceptions
6. First-class functions

7. Abstract Data Types

coin of int |
bill of int |
check of string*real;
val dime = coin(10);

A good ML reference is
“Elements of ML Programming,”

by Jeffrey Ullman
(Prentice Hall, 1998)

€S 538 Spring 2002

ML—Meta Language

SML is Standard ML, a popular ML
variant.

ML is a functional language that is
designed to be efficient and type-
safe. It demonstrates that a
functional language need not use
Scheme’s odd syntax and need not

bear the overhead of dynamic typing.

SML’s features and innovations
include:
1. Strong, compile-time typing.

2. Automatic type inference rather
than user-supplied type
declarations.

3. Polymorphism, including “type
variables.”

€S 538 Spring 2007

241

SML is Interactive

You enter a definition or expression,
and SML returns a result with an
inferred type.

The command
use "file name";

loads a set of ML definitions from a
file.

For example (SML responses are in
blue):

21;

valit=21:int

(2 div 3);

valit=0:int

true;

val it = true : bool

"xyz";

val it = "xyz" : string

S 538 Spring 200

243

