
236CS 538 Spring 2002
©

Another Example of Futures
The following function, partition ,
will take a list and a data value
(called pivot). partition will
partition the list into two sublists:
(a) Those elements ≤ pivot

(b) Those elements > pivot
(define (partition pivot L)
 (if (null? L)
 (cons () ())
 (let ((tail-part

(partition pivot (cdr L))))
 (if (<= (car L) pivot)
 (cons

(cons (car L) (car tail-part))
(cdr tail-part))

 (cons
(car tail-part))
(cons (car L) (cdr tail-part))

)
)))

237CS 538 Spring 2002
©

We want to add futures to partition,
but where?
It makes sense to use a future when a
computation may be lengthy and we
may not need to use the value
computed immediately.
What computation fits that pattern?
The computation of tail-part . We’ll
mark it in a blue box to show we plan
to evaluate it using a future:

238CS 538 Spring 2002
©

(define (partition pivot L)
 (if (null? L)
 (cons () ())
 (let ((tail-part

(partition pivot (cdr L))))
 (if (<= (car L) pivot)
 (cons

(cons (car L) (car tail-part))
(cdr tail-part))

 (cons
(car tail-part))
(cons (car L) (cdr tail-part))

)
)))

But this one change isn’t enough! We
soon access the car and cdr of
tail-part , which forces us to wait
for its computation to complete. To
avoid this delay, we can place the
four reference to car or cdr of
tail-part into futures too:

239CS 538 Spring 2002
©

(define (partition pivot L)
 (if (null? L)
 (cons () ())
 (let ((tail-part

(partition pivot (cdr L))))
 (if (<= (car L) pivot)
 (cons

(cons (car L) (car tail-part))
(cdr tail-part))

 (cons
(car tail-part))
(cons (car L) (cdr tail-part))

)
)))

240CS 538 Spring 2002
©

Now we can build the initial part of
the partitioned list (that involving
pivot and (car L) independently of
the recursive call of partition ,
which completes the rest of the list.
For example,
(partition 17 '(5 3 8 ...))

creates a future (call it future1) to
compute
(partition 17 '(3 8 ...))

It also creates future2 to compute
(car tail-part) and future3 to
compute (cdr tail-part) . The call
builds

5 future2

future3

241CS 538 Spring 2002
©

ML—Meta Language
SML is Standard ML, a popular ML
variant.
ML is a functional language that is
designed to be efficient and type-
safe. It demonstrates that a
functional language need not use
Scheme’s odd syntax and need not
bear the overhead of dynamic typing.
SML’s features and innovations
include:
1. Strong, compile-time typing.
2. Automatic type inference rather

than user-supplied type
declarations.

3. Polymorphism, including “type
variables.”

242CS 538 Spring 2002
©

4. Pattern-directed Programming
fun len([]) = 0

 | len(a::b) = 1+len(b);

5. Exceptions
6. First-class functions
7. Abstract Data Types
 coin of int |

bill of int |
check of string*real;
val dime = coin(10);

A good ML reference is
“Elements of ML Programming,”
by Jeffrey Ullman
(Prentice Hall, 1998)

243CS 538 Spring 2002
©

SML is Interactive
You enter a definition or expression,
and SML returns a result with an
inferred type.
The command
 use "file name";

loads a set of ML definitions from a
file.
For example (SML responses are in
blue):
21;
val it = 21 : int

(2 div 3);
val it = 0 : int

true;
val it = true : bool

"xyz";
val it = "xyz" : string

