Basic SML Predefined Types

. Unit

Its only value is () . Type unit is
similar to void in C; it is used where
a type is needed, but no “real” type is
appropriate. For example, a call to a
write function may return unit as its
result.

- Integer

Constants are sequences of digits.
Negative values are prefixed with a ~
rather than a - (- is a binary
subtraction operator). For example,
~123 IS negative 123.

Standard operators include
+ - * div mod
< > <= >x= = <>

S 538 Spring 2002

For example, real(3) returns 3.0 ,
floor(3.1) returns 3,

ceiling(3.3) returns 4,
round(~3.6) returns ~4,
trunc(3.9) returns 3.

Mixed mode expressions, like

1 + 2.5 aren't allowed; you must do
explicit conversion, like

real(1) + 2.5

. Strings

Strings are delimited by double
guotes. Newlines are \n , tabs are \t ,
and \" and \\ escape double quotes
and backslashes. E.g. "Bye now\n"

The ~ operator is concatenation.
"abc" ~ "def" = "abcdef"

The usual relation operators are
provided: < > <= >= = <>

€S 538 Spring 2002

246

. Real

Both fractional (123.456) and
exponent forms (10e7) are allowed.
Negative signs and exponents use ~
rather than - (~10.0e~12).
Standard operators include

+ - * |/

< > <= >=

Note that = and <> aren’t allowed!
(Why?)

Conversion routines include

Single characters are delimited by
double quotes and prefixed by a #.
For example, #'a" or #\t" . A
character is not a string of length one.
The str function may be used to
convert a character into a string. Thus
str(#"a") = "a"

. Boolean

Constants are true and false
Operators include andalso (short-
circuit and), orelse (short-circuit
or), not , = and <>.

A conditional expression,

(if boolval v
available.

pelsev) is

real(int) to convert anint to a
real ,
floor(real) to take the floor of a
real |,
ceil(real) to take the ceiling of a
real .
round(real) to round a real |,
trunc(real) to truncate a real .

- Characters

S 538 Spring 200

Tuples

A tuple type, composed of two or
more values of any type is available.

Tuples are delimited by parentheses,
and values are separated by commas.

Examples include:
(1,2);

val it = (1,2) : int * int
("xyz",1=2);

val it = ("xyz",false) :
string * bool
(1,3.0,false);

val it = (1,3.0,false) :
int * real * bool
(1,2,(3.4));

val it = (1,2,(3,4)) :
int * int * (int * int)

S 538 Spring 2007 248

Lists

Lists are required to have a single
element type for all their elements;
their length is unbounded.

Lists are delimited by [and] and
elements are separated by commas.

Thus [1,2,3] is an integer list. The
empty (or null) listis] or nil .

The cons operator is ::

Hence [1,2,3] = 1:2:3:]
Lists are automatically typed by ML:
[1.2];

val it = [1,2] : int list

€S 538 Spring 2002 250

Equality is checked componentwise:
(1,2) = (0+1,1+2);

val it = true : bool

(1,2,3)=(1,2) causes a compile-
time type error (tuples must be of the
same length and have corresponding
types to be compared).

#i selects the i -th component of a
tuple (counting from 1). Hence
#2(1,2,3);

valit=2:int

€S 538 Spring 2007 249

Cons
Cons is an infix operator represented
as
The left operand of :: is any value of
type T.

The right operand of :: is any list of
type T list

The result of :: is a list of type
T list

Hence :: is polymorphic.
[l isthe empty list. It has a type

‘alist . The symbol 'a , read as
“alpha” or “tic a” is a type variable.

Thus [] is a polymorphic constant.

S 538 Spring 200 251

List Equality

Two lists may be compared for

equality if they are of the same type.

Lists L1 and L2 are considered equal

if:

(1) They have the same number of
elements

(2) Corresponding members of the
two lists are equal.

List Operators

hd = head of list operator = car
tl = tail of list operator = cdr

null = null list predicate = null?
@= infix list append operator =
append

S 538 Spring 2002

252

The order of fields is irrelevant;
equality is tested using field names.
{a=1,b=2}={b=2,a=2-1};

val it = true : bool

#id extracts the field named id from
a record.

#b {a=1,b=2} ;

valit=2:int

€S 538 Spring 2002

Records

Their general form is
{name ;=val {, name ,=val 5, ...}

Field selector names are local to a
record.

For example:
{a=1,b=2},

val it = {a=1,b=2} :
{a:int, b:int}
{a=1,b="xyz"};

val it = {a=1,b="xyz"} :
{aint, b:string}

{a=1.0,b={c=[1,2]}};

val it = {a=1.0,b={c=[1,2]}} :
{a:real, b:{c:int list}}

€S 538 Spring 2007

253

Identifiers

There are two forms:
. Alphanumeric (excluding reserved words)

Any sequence of letters, digits, single
quotes and underscores; must begin
with a letter or single quote.

Case is significant. Identifiers that
begin with a single quote are type
variables.

Examples include:

abc alo 'polar sum_of_20
- Symbolic

Any sequence (except predefined
operators) of

1% &+-/:<=>2@\~"|#*

Usually used for user-defined
operators.

Examples include: ++ <=>1=

S 538 Spring 200

255

Comments

Of form
(* text?®)
May cross line boundaries.

Declaration of Values

The basic form is

val id = expression;

This defines id to be bound to
expression ; ML answers with the
name and value defined and the
inferred type.

For example

val x = 10*10;

val x =100 : int

S 538 Spring 2002 256

Examples

val x = 1;
valx=1:int
val z = (X,x,X);
val z = (1,1,1) : int * int * int
val L =[z,z];
val L =[(1,1,1),(1,1,1)] :
(int * int * int) list
val r = {a=L};
val r ={a=[(1,1,1),(2,1,1)]} :
{a:(int * int * int) list}
After rebinding, the “nearest” (most
recent) binding is used.

€S 538 Spring 2002 258

Redefinition of an identifier is OK,
but this is redefinition not
assignment;

Thus

val x = 100;

val x = (x=100);

Is fine; there is no type error even
though the first x is an integer and
then it is a boolean.

val x =100 : int

val x = true : bool

€S 538 Spring 2007

257

The and symbol (not boolean and) is
used for simultaneous binding:

val x = 10;

val x =10 : int

val x =true and y = x;

val x = true : bool

valy =10 :int

Local definitions are temporary value
definitions:
local
val x =10
in
val u = x*x;
end;
valu=100:int

S 538 Spring 200

259

Let bindings are used in expressions:

let
val x =10
in
5*x
end;
val it =50 : int

S 538 Spring 2002

260

