Basic SML Predefined Types

. Unit

Its only value Is () . Type unit IS
similar to void In C; It Is used where
a type Is needed, but no “real” type Is
appropriate. For example, a call to a
write function may return unit as Its
result.

. Integer

Constants are sequences of digits.
Negative values are prefixed with a ~
rather than a - (- Is a binary
subtraction operator). For example,
~123 IS negative 123.

Standard operators include
+ - * div mod
< > <= >= = <>

CS 538 Spring 200%°

244

. Real

Both fractional (123.456) and
exponent forms (10e7) are allowed.
Negative signs and exponents use ~
rather than - (~10.0e~12).

Standard operators include
+ - * |
< > <= >=

Note that = and <> aren’t allowed!
(Why?)

Conversion routines include
real(int) to convert an int 10 a

real |
floor(real) to take the floor of a
real |,
ceil(real) to take the ceiling of a
real .

round(real) to round a real |,
trunc(real) to truncate a real .

CS 538 Spring 200%°

245

For example, real(3) returns 3.0 ,
floor(3.1) returns 3,

ceiling(3.3) returns 4,
round(~3.6) returns ~4,
trunc(3.9) returns 3.

Mixed mode expressions, like
1 + 2.5 aren’t allowed; you must do

explicit conversion, like
real(1) + 2.5

. Strings

Strings are delimited by double
quotes. Newlines are \n , tabs are \t ,
and \" and \\ escape double quotes
and backslashes. E.g. "Bye now\n"

The ~ operator Is concatenation.
"abc" * "def" = "abcdef"

The usual relation operators are
provided: < > <= >= = <>

CS 538 Spring 200%° 246

. Characters

Single characters are delimited by
double quotes and prefixed by a #.
For example, #'a" or #\t" . A
character is not a string of length one.
The str function may be used to

convert a character into a string. Thus
str(#"a") = "a"

. Boolean

Constants are true and false .
Operators include andalso (short-
circuit and), orelse (short-circuit
or), not , = and <>.

A conditional expression,

(if boolval v 1 elsev) IS
available.

CS 538 Spring 200%°

247

Tuples

A tuple type, composed of two or
more values of any type Is available.

Tuples are delimited by parentheses,
and values are separated by commas.

Examples include:
(1,2);

val it = (1,2) : int * int
("xyz",1=2);

val it = ("xyz" false) :
string * bool
(1,3.0,false);

val it = (1,3.0,false) :
Int * real * bool

(1,2,(3,4));

val it = (1,2,(3,4)) :
Int * int * (int * Int)

CS 538 Spring 200%° 248

Equality Is checked componentwise:
(1,2) = (0+1,1+1);

val it = true : bool

(1,2,3) = (1,2) causes a compile-
time type error (tuples must be of the

same length and have corresponding
types to be compared).

#i selects the i -th component of a
tuple (counting from 1). Hence

#2(1,2,3);
valit=2 :int

CS 538 Spring 200%° 249

Lists

Lists are required to have a single
element type for all their elements;
their length is unbounded.

Lists are delimited by [and] and
elements are separated by commas.

Thus [1,2,3] Is an integer list. The
empty (or null) list is] or nil .

The cons operator Is ::
Hence [1,2,3] = 1::2::3:]]

1,2];
val it =[1,2] : int list

_ists are automatically typed by ML:

CS 538 Spring 200%°

250

Cons

Cons Is an infix operator represented
as ::

The left operand of :: is any value of
type T.

The right operand of :: Is any list of
type T list

The result of :: Is a list of type
T list

Hence :: Is polymorphic.
[] 1s the empty list. It has a type

‘a list . The symbol 'a , read as
“alpha” or “tic a” Is a type variable.

Thus [] Is a polymorphic constant.

CS 538 Spring 200%°

251

List Equality

Two lists may be compared for

equality If they are of the same type.

Lists L1 and L2 are considered equal

If:

(1) They have the same number of
elements

(2) Corresponding members of the
two lists are equal.

List Operators

hd = head of list operator = car
tt = tail of list operator = cdr
null = null list predicate = null?

@= Infix list append operator =
append

CS 538 Spring 200%°

252

Records

Their general form is
{name ;=val {, name ,=val ,, ... }

Field selector names are local to a
record.

For example:

{a=1,b=2};

val it = {a=1,b=2} :

{a:int, b:int}
{a=1,b="xyz"},

val it = {a=1,b="xyz"} :
{a:int, b:string}
{a=1.0,b={c=[1,2]}};

val it = {a=1.0,b={c=[1,2]}} :
{a:real, b:{c:int list}}

CS 538 Spring 200%° 253

The order of fields is Irrelevant;
equality Is tested using field names.

{a=1,b=2}={b=2,a=2-1};
val it = true : bool

#id extracts the field named 1d from
a record.

#b {a=1,b=2};

val it =2 :int

CS 538 Spring 200%° 254

|dentifiers

There are two forms:
. Alphanumeric (excluding reserved words)

Any sequence of letters, digits, single
quotes and underscores; must begin
with a letter or single quote.

Case Is significant. ldentifiers that
begin with a single quote are type
variables.

Examples include:

abc all 'polar sum_of 20
. Symbolic

Any sequence (except predefined
operators) of

1% & +-/:<=>2@\~"|#*

Usually used for user-defined
operators.

Examples include: ++ <=> 1=

CS 538 Spring 200%° 255

Comments

Of form
(* text*)
May cross line boundaries.

Declaration of Values

The basic form Is

val id = expression;

This defines id to be bound to
expression ; ML answers with the
name and value defined and the
Inferred type.

For example

val x = 10*10;

val x = 100 : Int

CS 538 Spring 200%° 256

Redefinition of an identifier is OK,
but this 1s redefinition not
assignment;

Thus

val x = 100;

val x = (x=100);

Is fine; there Is no type error even

though the first x Is an integer and
then it iIs a boolean.

val Xx =100 : int
val x = true : bool

CS 538 Spring 200%°

257

Examples

val x = 1;
val x =1 :int
val z = (X,X,X);
val z = (1,1,1) : int * Iint * int
val L = [z,z];
val L=1[(1,1,1),(1,1,1)] :
(int * Iint * int) list
val r = {a=L};
val r = {a=[(1,1,1),(1,1,1)]} :
{a:(int * int * int) list}
After rebinding, the “nearest” (most
recent) binding is used.

CS 538 Spring 200%°

258

The and symbol (not boolean and) is
used for simultaneous binding:

val x = 10;

val x =10 : int

val X =true and y = x;

val x = true : bool

valy =10 : int

Local definitions are temporary value
definitions:

local

val x = 10
N

val u = xX*x;
end;
val u =100 : int

CS 538 Spring 200%° 259

Let bindings are used In expressions:

let
val x =10
In
5*X
end;
val it = 50 : int

CS 538 Spring 200%° 260

