
244CS 538 Spring 2002
©

Basic SML Predefined Types
• Unit

Its only value is () . Type unit is
similar to void in C; it is used where
a type is needed, but no “real” type is
appropriate. For example, a call to a
write function may return unit as its
result.

• Integer
Constants are sequences of digits.
Negative values are prefixed with a ~
rather than a - (- is a binary
subtraction operator). For example,
~123 is negative 123 .
Standard operators include
+ - * div mod
< > <= >= = <>

245CS 538 Spring 2002
©

• Real
Both fractional (123.456) and
exponent forms (10e7) are allowed.
Negative signs and exponents use ~
rather than - (~10.0e~12).
Standard operators include
+ - * /
< > <= >=

Note that = and <> aren’t allowed!
(Why?)
Conversion routines include
real(int) to convert an int to a
real ,
floor(real) to take the floor of a
real ,
ceil(real) to take the ceiling of a
real .
round(real) to round a real ,
trunc(real) to truncate a real .

246CS 538 Spring 2002
©

For example, real(3) returns 3.0 ,
floor(3.1) returns 3,
ceiling(3.3) returns 4,
round(~3.6) returns ~4,
trunc(3.9) returns 3.
Mixed mode expressions, like
1 + 2.5 aren’t allowed; you must do
explicit conversion, like
real(1) + 2.5

• Strings
Strings are delimited by double
quotes. Newlines are \n , tabs are \t ,
and \" and \\ escape double quotes
and backslashes. E.g. "Bye now\n"
The ^ operator is concatenation.
"abc" ^ "def" = "abcdef"

The usual relation operators are
provided: < > <= >= = <>

247CS 538 Spring 2002
©

• Characters
Single characters are delimited by
double quotes and prefixed by a #.
For example, #"a" or #"\t" . A
character is not a string of length one.
The str function may be used to
convert a character into a string. Thus
str(#"a") = "a"

• Boolean
Constants are true and false .
Operators include andalso (short-
circuit and), orelse (short-circuit
or), not , = and <>.
A conditional expression,
(if boolval v 1 else v 2) is
available.

248CS 538 Spring 2002
©

Tuples
A tuple type, composed of two or
more values of any type is available.
Tuples are delimited by parentheses,
and values are separated by commas.
Examples include:
(1,2);
val it = (1,2) : int * int

("xyz",1=2);
val it = ("xyz",false) :
 string * bool

(1,3.0,false);
val it = (1,3.0,false) :
 int * real * bool

(1,2,(3,4));
val it = (1,2,(3,4)) :
int * int * (int * int)

249CS 538 Spring 2002
©

Equality is checked componentwise:
(1,2) = (0+1,1+1);
val it = true : bool

(1,2,3) = (1,2) causes a compile-
time type error (tuples must be of the
same length and have corresponding
types to be compared).
#i selects the i -th component of a
tuple (counting from 1). Hence
#2(1,2,3);
val it = 2 : int

250CS 538 Spring 2002
©

Lists
Lists are required to have a single
element type for all their elements;
their length is unbounded.
Lists are delimited by [and] and
elements are separated by commas.
Thus [1,2,3] is an integer list. The
empty (or null) list is [] or nil .
The cons operator is ::

Hence [1,2,3] ≡ 1::2::3::[]

Lists are automatically typed by ML:
[1,2];
val it = [1,2] : int list

251CS 538 Spring 2002
©

Cons
Cons is an infix operator represented
as ::

The left operand of :: is any value of
type T.
The right operand of :: is any list of
type T list .
The result of :: is a list of type
T list .

Hence :: is polymorphic.
[] is the empty list. It has a type
'a list . The symbol 'a , read as
“alpha” or “tic a” is a type variable.
Thus [] is a polymorphic constant.

252CS 538 Spring 2002
©

List Equality
Two lists may be compared for
equality if they are of the same type.
Lists L1 and L2 are considered equal
if:
(1) They have the same number of
 elements
(2) Corresponding members of the
 two lists are equal.

List Operators
hd ≡ head of list operator ≈ car

tl ≡ tail of list operator ≈ cdr

null ≡ null list predicate ≈ null?

@≡ infix list append operator ≈
append

253CS 538 Spring 2002
©

Records
Their general form is
{name 1=val 1, name 2=val 2, ... }

Field selector names are local to a
record.
For example:
{a=1,b=2};

val it = {a=1,b=2} :
 {a:int, b:int}

{a=1,b="xyz"};
val it = {a=1,b="xyz"} :
 {a:int, b:string}

{a=1.0,b={c=[1,2]}};
val it = {a=1.0,b={c=[1,2]}} :
{a:real, b:{c:int list}}

254CS 538 Spring 2002
©

The order of fields is irrelevant;
equality is tested using field names.
{a=1,b=2}={b=2,a=2-1};
val it = true : bool

#id extracts the field named id from
a record.
#b {a=1,b=2} ;

val it = 2 : int

255CS 538 Spring 2002
©

Identifiers
There are two forms:
• Alphanumeric (excluding reserved words)

Any sequence of letters, digits, single
quotes and underscores; must begin
with a letter or single quote.
Case is significant. Identifiers that
begin with a single quote are type
variables.
Examples include:
abc a10 'polar sum_of_20

• Symbolic
Any sequence (except predefined
operators) of
! % & + - / : < = > ? @ \ ~ ^ | # *

Usually used for user-defined
operators.
Examples include: ++ <=> !=

256CS 538 Spring 2002
©

Comments
Of form
(* text *)

May cross line boundaries.

Declaration of Values
The basic form is
val id = expression;

This defines id to be bound to
expression ; ML answers with the
name and value defined and the
inferred type.
For example
val x = 10*10;
val x = 100 : int

257CS 538 Spring 2002
©

Redefinition of an identifier is OK,
but this is redefinition not
assignment;
Thus
val x = 100;

val x = (x=100);

is fine; there is no type error even
though the first x is an integer and
then it is a boolean.
val x = 100 : int

val x = true : bool

258CS 538 Spring 2002
©

Examples
val x = 1;
val x = 1 : int

val z = (x,x,x);
val z = (1,1,1) : int * int * int

val L = [z,z];
val L = [(1,1,1),(1,1,1)] :
 (int * int * int) list

val r = {a=L};
val r = {a=[(1,1,1),(1,1,1)]} :
{a:(int * int * int) list}

After rebinding, the “nearest” (most
recent) binding is used.

259CS 538 Spring 2002
©

The and symbol (not boolean and) is
used for simultaneous binding:
val x = 10;
val x = 10 : int

val x = true and y = x;
val x = true : bool

val y = 10 : int

Local definitions are temporary value
definitions:
local

 val x = 10

 in

 val u = x*x;

 end;
val u = 100 : int

260CS 538 Spring 2002
©

Let bindings are used in expressions:
let

 val x = 10

in
 5*x

end;
val it = 50 : int

