
261CS 538 Spring 2002
©

Patterns
In Scheme (and most other
languages) we need access or
decomposition functions to access the
components of a structured object.
Thus we might have
(let ((h (car L) (t (cdr L)))

 body)

Here car and cdr are used as access
functions to locate the parts of L we
want to access.
In ML, we can access components of
lists (or tuples, or records) directly by
using patterns. The context in which
the identifier appears tells us the part
of the structure it references.

262CS 538 Spring 2002
©

val x = (1,2);
val x = (1,2) : int * int

val (h,t) = x;
val h = 1 : int

val t = 2 : int

val L = [1,2,3];
val L = [1,2,3] : int list

val [v1,v2,v3] = L;
val v1 = 1 : int

val v2 = 2 : int

val v3 = 3 : int

val [1,x,3] = L;
val x = 2 : int

val [1,rest] = L;
(* This is illegal. Why? *)

val yy::rest = L;
val yy = 1 : int

val rest = [2,3] : int list

263CS 538 Spring 2002
©

Wildcards
An underscore (_) may be used as a
“wildcard” or “don’t care” symbol. It
matches part of a structure without
defining an new binding.
val zz::_ = L;
val zz = 1 : int

Pattern matching works in records
too.
val r = {a=1,b=2};
val r = {a=1,b=2} :
 {a:int, b:int}

val {a=va,b=vb} = r;
val va = 1 : int

val vb = 2 : int

val {a=wa,b=_}=r;
val wa = 1 : int

val {a=za, ...}=r;
val za = 1 : int

264CS 538 Spring 2002
©

Patterns can be nested too.
val x = ((1,3.0),5);
val x = ((1,3.0),5) :
 (int * real) * int

val ((1,y),_)=x;
val y = 3.0 : real

265CS 538 Spring 2002
©

Functions
Functions take a single argument
(which can be a tuple).
Function calls are of the form
function_name argument;

For example
size "xyz";

cos 3.14159;

The more conventional form
size("xyz"); or cos(3.14159);

is OK (the parentheses around the
argument are allowed, but
unnecessary).
The form (size "xyz") or
(cos 3.14159)

is OK too.

266CS 538 Spring 2002
©

Note that the call
plus(1,2);

passes one argument, the tuple (1,2)

to plus .
The call dummy();

passes one argument, the unit value,
to dummy.
All parameters are passed by value.

267CS 538 Spring 2002
©

Function Types
The type of a function in ML is
denoted as T1->T2 . This says that a
parameter of type T1 is mapped to a
result of type T2.
The symbol fn denotes a value that is
a function.
Thus
size;
val it = fn : string -> int

not;
val it = fn : bool -> bool

Math.cos;
val it = fn : real -> real

(Math is an ML structure—an external
library member that contains
separately compiled definitions).

268CS 538 Spring 2002
©

User-Defined Functions
The general form is
fun name arg = expression;

ML answers back with the name
defined, the fact that it is a function
(the fn symbol) and its inferred type.
For example,
fun twice x = 2*x;
val twice = fn : int -> int

fun twotimes(x) = 2*x;
val twotimes = fn : int -> int

fun fact n =

 if n=0

 then 1

 else n*fact(n-1);
val fact = fn : int -> int

269CS 538 Spring 2002
©

fun plus(x,y) :int = x+y;
val plus = fn : int * int -> int

The :int suffix is a type constraint.
It is needed to help ML decide that +
is integer plus rather than real plus.

270CS 538 Spring 2002
©

Patterns In Function
Definitions

The following defines a predicate that
tests whether a list, L is null (the
predefined null function already
does this).
fun isNull L =
 if L=[] then true else
false;
val isNull = fn : 'a list -> bool

However, we can decompose the
definition using patterns to get a
simpler and more elegant definition:
 fun isNull [] = true

 | isNull(_::_) = false;
val isNull = fn : 'a list -> bool

271CS 538 Spring 2002
©

The “| ” divides the function
definition into different argument
patterns; no explicit conditional logic
is needed. The definition that matches
a particular actual parameter is
automatically selected.
fun fact(1) = 1

 | fact(n) = n*fact(n-1);
val fact = fn : int -> int

If patterns that cover all possible
arguments aren’t specified, you may
get a run-time Match exception.
If patterns overlap you may get a
warning from the compiler.

272CS 538 Spring 2002
©

fun append([],L) = L

 | append(hd::tl,L) =
hd::append(tl,L);

val append = fn :
 'a list * 'a list -> 'a list

If we add the pattern
append(L,[]) = L

we get a redundant pattern warning
(Why?)
fun append ([],L) = L

 | append(hd::tl,L) =
hd::append(tl,L)

 | append(L,[]) = L;
stdIn:151.1-153.20 Error: match
redundant

 (nil,L) => ...

 (hd :: tl,L) => ...

 --> (L,nil) => ...

273CS 538 Spring 2002
©

But a more precise decomposition is
fine:
fun append ([],L) = L

| append(hd::tl,hd2::tl2) =
 hd::append(tl,hd2::tl2)

 | append(hd::tl,[]) =
 hd::tl;
val append = fn :
 'a list * 'a list -> 'a list

