Patterns

In Scheme (and most other
languages) we need access or
decomposition functions to access the
components of a structured object.

Thus we might have
(let ((h (car L) (t (cdr L)))
body)

Here car and cdr are used as access
functions to locate the parts of L we
want to access.

In ML, we can access components of
lists (or tuples, or records) directly by
using patterns. The context in which
the identifier appears tells us the part
of the structure it references.

S 538 Spring 2002

261

Wildcards

An underscore (_) may be used as a
“wildcard” or “don’t care” symbol. It
matches part of a structure without
defining an new binding.

val zz::_ = L;

valzz=1:int

Pattern matching works in records
too.

val r = {a=1,b=2},

val r = {a=1,b=2}:

{a:int, b:int}

val {a=va,b=vb} =r;

valva=1:int

valvb =2 :int

val {a=wa,b=_}=r;

valwa=1:int

val {a=za, ...}=r;

valza=1:int

€S 538 Spring 2002

263

val x = (1,2);

val x = (1,2) : int * int
val (h,t) = x;
valh=1:int
valt=2:int

val L =[1,2,3];

val L =[1,2,3] : int list
val [vl,v2,v3] = L;
valvli=1:int

valv2 =2 :int
valv3=3:int

val [1,x,3] = L;

val x =2 :int

val [1,rest] = L;

(* This is illegal. Why? *)
val yy:rest = L;
valyy =1 :int

val rest =[2,3] : int list

€S 538 Spring 2007

262

Patterns can be nested too.
val x = ((1,3.0),5);
val x = ((1,3.0),5) :
(int * real) * int
val ((1,y),_)=x;
valy = 3.0 : real

S 538 Spring 200

264

Functions
Functions take a single argument
(which can be a tuple).

Function calls are of the form
function_name argument;

For example

size "xyz";

cos 3.14159;

The more conventional form
size("xyz"); or cos(3.14159);

is OK (the parentheses around the
argument are allowed, but
unnecessary).

The form (size "xyz") or
(cos 3.14159)

is OK too.

S 538 Spring 2002

265

Function Types

The type of a function in ML is
denoted as T1->T2 . This says that a
parameter of type T1 is mapped to a
result of type T2.

The symbol fn denotes a value that is
a function.

Thus

size;

val it = fn : string -> int

not;

val it = fn : bool -> bool

Math.cos;

val it = fn : real -> real

(Math is an ML structure—an external
library member that contains
separately compiled definitions).

€S 538 Spring 2002

Note that the call

plus(1,2);

passes one argument, the tuple (1,2)
1o plus .

The call dummy();

passes one argument, the unit value,
to dummy

All parameters are passed by value.

€S 538 Spring 2007

266

User-Defined Functions

The general form is
fun name arg = expression;

ML answers back with the name
defined, the fact that it is a function

(the fn symbol) and its inferred type.

For example,
fun twice x = 2*x;
val twice = fn : int -> int
fun twotimes(x) = 2*x;
val twotimes = fn : int -> int
fun factn =

if n=0

then 1

else n*fact(n-1);
val fact = fn : int -> int

S 538 Spring 200

268

fun plus(x,y) int = X+y;
val plus = fn :int * int -> int
The :int suffix is a type constraint.

It is needed to help ML decide that +
is integer plus rather than real plus.

CS 538 Sprin:

g 2005

269

The “| ” divides the function
definition into different argument
patterns; no explicit conditional logic
is needed. The definition that matches
a particular actual parameter is
automatically selected.

funfact(1) =1
| fact(n) = n*fact(n-1);
val fact = fn : int -> int

If patterns that cover all possible
arguments aren’t specified, you may
get a run-time Match exception.

If patterns overlap you may get a
warning from the compiler.

CS 538 Spring

g 2005

Patterns In Function
Definitions

The following defines a predicate that
tests whether a list, L is null (the
predefined null function already

does this).
fun isNull L =
if L=[] then true else
false;
val isNull = fn : 'a list -> bool

However, we can decompose the
definition using patterns to get a
simpler and more elegant definition:
fun isNull [] = true

[isNull(_::) = false;
val isNull = fn : 'a list -> bool

CS 538 Sprin

g 2005 270

fun append([],.L) = L
| append(hd::tl,L) =
hd::append(tl,L);
val append =fn :
'a list * 'a list -> 'a list
If we add the pattern
append(L,[]) =L
we get a redundant pattern warning
(Why?)
fun append (J,L) =L
| append(hd::tl,L) =
hd::append(tl,L)
| append(L,[]) = L;
stdIn:151.1-153.20 Error: match

redundant
(nil,L) => ...
(hd 2 tlL) => ...

> (Lnil) => ...

CS 538 Sprin,

g 2007 272

But a more precise decomposition is
fine:
fun append ([J,L) =L
| append(hd::tl,hd2::112) =
hd::append(tl,hd2::tl12)
| append(hd::tl,[]) =
hd::tl;
val append =fn:
‘a list * 'a list -> "a list

S 538 Spring 2002

273

