
274CS 538 Spring 2002
©

Function Types Can be
Polytypes

Recall that 'a , 'b , ... represent type
variables. That is, any valid type may
be substituted for them when
checking type correctness.
ML said the type of append is
val append = fn :
 'a list * 'a list -> 'a list

Why does 'a appear in three places?
We can define eitherNull , a
predicate that determines whether
either of two lists is null as
fun eitherNull(L1,L2) =
 null(L1) orelse null(L2);
val eitherNull =
 fn : ’a list * ’b list -> bool

Why are both 'a and 'b used in
eitherNull ’s type?

275CS 538 Spring 2002
©

Currying
ML chooses the most general (least-
restrictive) type possible for user-
defined functions.
Functions are first-class objects, as in
Scheme.
The function definition
fun f x y = expression;

defines a function f (of x) that
returns a function (of y).
Reducing multiple argument
functions to a sequence of one
argument functions is called currying
(after Haskell Curry, a mathematician
who popularized the approach).

276CS 538 Spring 2002
©

Thus
fun f x y = x :: [y];
val f = fn : 'a -> 'a -> 'a list

says that f takes a parameter x , of
type 'a , and returns a function (of y,
whose type is 'a) that returns a list
of 'a .
Contrast this with the more
conventional
fun g(x,y) = x :: [y];
val g = fn : 'a * 'a -> 'a list

Here g takes a pair of arguments
(each of type 'a) and returns a value
of type 'a list.
The advantage of currying is that we
can bind one argument and leave the
remaining argument(s) free.

277CS 538 Spring 2002
©

For example
f(1);

is a legal call. It returns a function of
type
fn : int -> int list

The function returned is equivalent to
fun h b = 1 :: [b];
val h = fn : int -> int list

278CS 538 Spring 2002
©

Map Revisited
ML supports the map function, which
can be defined as
fun map(f,[]) = []
 | map(f,x::y) =
 (f x) :: map(f,y);
val map =
fn : ('a -> 'b) * 'a list -> 'b list

This type says that map takes a pair of
arguments. One is a function from
type 'a to type 'b . The second
argument is a list of type 'a . The
result is a list of type 'b .
In curried form map is defined as
fun map f [] = []
 | map f (x::y) =
 (f x) :: map f y;
val map =
 fn : ('a -> 'b) ->
 'a list -> 'b list

279CS 538 Spring 2002
©

This type says that map takes one
argument that is a function from type
'a to type 'b . It returns a function
that takes an argument that is a list
of type 'a and returns a list of type
'b .
The advantage of the curried form of
map is that we can now use map to
create “specialized” functions in
which the function that is mapped is
fixed.
For example,
val neg = map not;
val neg =
 fn : bool list -> bool list

neg [true,false,true];
val it = [false,true,false] :
 bool list

280CS 538 Spring 2002
©

Power Sets Revisited
Let’s compute power sets in ML.
We want a function pow that takes a
list of values, viewed as a set, and
which returns a list of lists. Each
sublist will be one of the possible
subsets of the original argument.
For example,
pow [1,2] = [[1,2],[1],[2],[]]

We first define a version of cons in
curried form:
fun cons h t = h::t;
val cons = fn :
 'a -> 'a list -> 'a list

281CS 538 Spring 2002
©

Now we define pow. We define the
powerset of the empty list, [] , to be
[[]] . That is, the power set of the
empty set is set that contains only
the empty set.
For a non-empty list, consisting of
h::t , we compute the power set of t ,
which we call pset . Then the power
set for h::t is just h distributed
through pset appended to pset .
We distribute h through pset very
elegantly: we just map the function
(cons h) to pset . (cons h) adds h
to the head of any list it is given.
Thus mapping (cons h) to pset
adds h to all lists in pset .

282CS 538 Spring 2002
©

The complete definition is simply
fun pow [] = [[]]

 | pow (h::t) =

 let

 val pset = pow t

 in

 (map (cons h) pset) @ pset

 end;
val pow =
 fn : 'a list -> 'a list list

Let’s trace the computation of
pow [1,2] .
Here h = 1 and t = [2] . We need to
compute pow [2] .
Now h = 2 and t = [] .
We know pow [] = [[]] ,
so pow [2] =
(map (cons 2) [[]])@[[]] =
([[2]])@[[]] = [[2],[]]

283CS 538 Spring 2002
©

Therefore pow [1,2] =

(map (cons 1) [[2],[]])
@[[2],[]] =

[[1,2],[1]]@[[2],[]] =
[[1,2],[1],[2],[]]

284CS 538 Spring 2002
©

Composing Functions
We can define a composition function
that composes two functions into
one:
fun comp (f,g)(x) = f(g(x));
val comp = fn :
('a -> 'b) * ('c -> 'a) ->
 'c -> 'b

In curried form we have
fun comp f g x = f(g(x));
val comp = fn :
('a -> 'b) ->
('c -> 'a) -> 'c -> 'b

For example,
fun sqr x :int = x*x;

val sqr = fn : int -> int

comp sqr sqr;
val it = fn : int -> int

285CS 538 Spring 2002
©

comp sqr sqr 3;
val it = 81 : int

In SMP o (lower-case O) is the infix
composition operator.
Hence
sqr o sqr ≡ comp sqr sqr

286CS 538 Spring 2002
©

Lambda Terms
ML needs a notation to write down
unnamed (anonymous) functions,
similar to the lambda expressions
Scheme uses.
That notation is
fn arg => body;

For example,
val sqr = fn x :int => x*x;
val sqr = fn : int -> int

In fact the notation used to define
functions,
fun name arg = body;

is actually just an abbreviation for the
more verbose
val name = fn arg => body;

287CS 538 Spring 2002
©

An anonymous function can be used
wherever a function value is needed.
For example,
map (fn x => [x]) [1,2,3];
val it =
[[1],[2],[3]] : int list list

We can use patterns too:
(fn [] => []
 |(h::t) => h::h::t);
val it = fn : 'a list -> 'a list

(What does this function do?)

288CS 538 Spring 2002
©

Polymorphism vs. Overloading
ML supports polymorphism.
A function may accept a polytype (a
set of types) rather than a single
fixed type.
In all cases, the same function
definition is used. Details of the
supplied type are irrelevant and may
be ignored.
For example,
fun id x = x;
val id = fn : 'a -> 'a

fun toList x = [x];
val toList = fn : 'a -> 'a list

289CS 538 Spring 2002
©

Overloading, as in C++ and Java,
allows alternative definitions of the
same method or operator, with
selection based on type.
Thus in Java + may represent integer
addition, floating point addition or
string concatenation, even though
these are really rather different
operations.
In ML +, - , * and = are overloaded.
When = is used (to test equality), ML
deduces that an equality type is
required. (Most, but not all, types can
be compared for equality).
When ML decides an equality type is
needed, it uses a type variable that
begins with two tics rather than one.
fun eq(x,y) = (x=y);
val eq = fn : ''a * ''a -> bool

290CS 538 Spring 2002
©

Defining New Types in ML
We can create new names for existing
types (type abbreviations) using
type id = def;

For example,
type triple = int*real*string;
type triple = int * real * string

type rec1=
 {a:int,b:real,c:string};
type rec1 =
 {a:int, b:real, c:string}

type 'a triple3 = 'a*'a*'a;
type 'a triple3 = 'a * 'a * 'a

type intTriple = int triple3;
type intTriple = int triple3

These type definitions are essentiality
macro-like name substitutions.

291CS 538 Spring 2002
©

The Datatype Mechanism
New types are defined using the
datatype mechanism, which
specifies new data value constructors.
For example,
datatype color =
 red|blue|green;
datatype color =
 blue | green | red

Pattern matching works on user-
defined types using their
constructors:
fun translate red = "rot"
 | translate blue = "blau"
 | translate green = "gruen";
val translate =
 fn : color -> string

292CS 538 Spring 2002
©

fun jumble red = blue
 | jumble blue = green
 | jumble green = red;
val jumble = fn : color -> color

translate (jumble green);
val it = "rot" : string

SML Examples
Source code for most of the SML
examples presented here may be
found in
~cs538-1/public/sml/class.sml

293CS 538 Spring 2002
©

Parameterized Constructors
The constructors used to define data
types may be parameterized:
datatype money =
 none
 | coin of int

 | bill of int

 | iou of real * string;
datatype money =
 bill of int | coin of int
 | iou of real * string | none

Now expressions like coin(25) or
bill(5) or iou(10.25,"Andy")
represent valid values of type money.

294CS 538 Spring 2002
©

We can also define values and
functions of type money:
val dime = coin(10);
val dime = coin 10 : money

val deadbeat =
iou(25.00,"Homer Simpson");
val deadbeat =
 iou (25.0,"Homer Simpson") :
 money

fun amount(none) = 0.0

 | amount(coin(cents)) =
 real(cents)/100.0

 | amount(bill(dollars)) =
 real(dollars)

 | amount(iou(amt,_)) =
 0.5*amt;
 val amount = fn : money -> real

