Function Types Can be
Polytypes

Recall that 'a , 'b , ... represent type
variables. That is, any valid type may
be substituted for them when
checking type correctness.

ML said the type of append Is

val append =1fn:

‘a list * 'a list -> 'a list

Why does 'a appear In three places?

We can define eitherNull |, a
predicate that determines whether
either of two lists is null as

fun eitherNull(L1,L2) =
null(L1) orelse null(L2);

val eitherNull =
fn:'alist * 'b list -> bool

Why are both'a and'b used In
eitherNull s type?

CS 538 Spring 200%°

274

currying

ML chooses the most general (least-
restrictive) type possible for user-
defined functions.

Functions are first-class objects, as In
Scheme.

The function definition
fun f X y = expression;

defines a function f (of x) that
returns a function (of y).

Reducing multiple argument
functions to a sequence of one
argument functions is called currying
(after Haskell Curry, a mathematician
who popularized the approach).

CS 538 Spring 200%°

275

Thus

funfxy=x:1yl;
valf=fn:'a->"'a->"alist

says that f takes a parameter x, of
type 'a , and returns a function (of vy,
whose type Is 'a) that returns a list
of 'a .

Contrast this with the more
conventional

fun g(x,y) = x 2 [vI;
valg=fn:'a*'a->"alist
Here g takes a pair of arguments

(each of type 'a) and returns a value
of type 'a list.

The advantage of currying is that we
can bind one argument and leave the
remaining argument(s) free.

CS 538 Spring 2002 276

For example

f(1);

Is a legal call. It returns a function of
type

fn :int -> int list

The function returned is equivalent to
funhb=1:[b]

val h =fn :int -> int list

CS 538 Spring 2002 77

Map Revisited

ML supports the map function, which
can be defined as

fun map(t,[]) = [}

| map(f,x:.y) =
(f X) ;- map(f,y);
val map =

fn . (‘a -> 'b) * 'a list -> b list
This type says that map takes a pair of
arguments. One Is a function from
type 'a to type 'b . The second
argument is a list of type 'a . The
result is a list of type 'b .

In curried form map Is defined as

funmapf[] =]
| map f (X::y) =
(fx) ;- map fy;
val map =
fn:(‘a->"'b) ->
‘a list -> 'b list

CS 538 Spring 200%°

278

This type says that map takes one
argument that is a function from type
'a to type 'b . It returns a function
that takes an argument that is a list
of type 'a and returns a list of type
'b .

The advantage of the curried form of
map IS that we can now use map to
create “specialized” functions in
which the function that is mapped Is
fixed.

For example,
val neg = map not;

val neg =
fn : bool list -> bool list

neg [true,false,true];

val it = [false,true,false] :
bool list

CS 538 Spring 2002 270

Power Sets Revisited

Let’s compute power sets in ML.

We want a function pow that takes a
list of values, viewed as a set, and
which returns a list of lists. Each
sublist will be one of the possible
subsets of the original argument.

For example,

pow [1,2] = [[1,2],[1],[2],[]]
We first define a version of cons In
curried form:

fun cons ht = h::t;

val cons =fn :
'‘a ->'alist -> 'a list

CS 538 Spring 200%° 280

Now we define pow. We define the
powerset of the empty list, [] , to be
1] . That is, the power set of the
empty set Is set that contains only
the empty set.

For a non-empty list, consisting of
h:t , we compute the power set of t ,
which we call pset . Then the power
set for h::it 1s just h distributed
through pset appended to pset .

We distribute h through pset very
elegantly: we just map the function
(cons h) to pset . (consh) adds h
to the head of any list It Is given.
Thus mapping (cons h) to pset
adds h to all lists In pset .

CS 538 Spring 200%° 281

The complete definition Is simply

fun pow [] = [[]]
| pow (h::t) =

let

val pset = pow t

In

(map (cons h) pset) @ pset
end,

val pow =
fn :'alist -> 'a list list

Let’s trace the computation of

pow [1,2]

Here h=1andt =[2] . We need to
compute pow [2] .

Nowh=2andt = .

We know pow [] =1[1]
SO pow [2] =

(map (cons 2) [[])@I][]]
(l2Ih@I[1] = [[2].[]

CS 538 Spring 200%° 282

Therefore pow [1,2] =

(map (cons 1) [[2],[]])
@I[2],[]] =

[[1.2].[1]1@[[2].[]] =

[[1.,2],[1].[2],01]

CS 538 Spring 200%°

Composing Functions

We can define a composition function
that composes two functions into
one:

fun comp (f,9)(x) = 1(9(x));
val comp =fn:
(a->'b)*(c->"a)->
'c->'b

In curried form we have
fun comp f g x = f(g(x));
val comp =1n:

(a->'b)->
(‘c->'a)->'c->'b

For example,

funsqrx int = X*X;
val sgr = fn : int -> int
comp sqr sqr;

val it =fn :int -> Int

CS 538 Spring 200%° 284

comp sqgr sqr 3;

val it =81 : int

In SMP o (lower-case O) Is the infix
composition operator.

Hence
sqr o sqr = comp sqgr sqr

CS 538 Spring 200%° 285

Lambda Terms

ML needs a notation to write down
unnamed (anonymous) functions,
similar to the lambda expressions
Scheme uses.

That notation Is

fn arg => body;

For example,

val sgr = fn x int => X*X;

val sqr = fn : int -> int

In fact the notation used to define
functions,

fun name arg = body;

Is actually just an abbreviation for the
more verbose

val name = fn arg => body;

CS 538 Spring 200%° 286

An anonymous function can be used
wherever a function value Is needed.
For example,

map (fn x => [X]) [1,2,3],

val it =
[[1].[2].[3]] : int list list

We can use patterns too:

(fn [J =>]
|(h::t) => h::h:t);
val it =fn : 'alist -> 'a list

(What does this function do?)

CS 538 Spring 2002 og7

Polymorphism vs. Overloading

ML supports polymorphism.

A function may accept a polytype (a
set of types) rather than a single
fixed type.

In all cases, the same function
definition is used. Detalls of the
supplied type are irrelevant and may
be ignored.

For example,
funid x = x;
valid=1fn:'a->"'a

fun toList x = [X];

val toList =fn : 'a -> 'a list

CS 538 Spring 200%°

288

Overloading, as in C++ and Java,
allows alternative definitions of the
same method or operator, with
selection based on type.

Thus In Java + may represent integer
addition, floating point addition or
string concatenation, even though
these are really rather different
operations.

In ML +, -, * and = are overloaded.

When = Is used (to test equality), ML
deduces that an equality type Is
required. (Most, but not all, types can
be compared for equality).

When ML decides an equality type Is
needed, It uses a type variable that
begins with two tics rather than one.

fun eq(x,y) = (x=y);
valeqg =1fn:"a*"a -> bool

CS 538 Spring 200%° 289

Defining New Types in ML

We can create new names for existing
types (type abbreviations) using

type id = def;

For example,

type triple = int*real*string;
type triple = int * real * string

type recl=
{a:int,b:real,c:string};

type recl =
{a:int, b:real, c:string}

type 'a triple3 ='a*'a*a;

type 'atriple3="'a*'a*'a

type intTriple = int triple3;

type intTriple = int triple3

These type definitions are essentiality
macro-like name substitutions.

CS 538 Spring 200%°

290

The Datatype Mechanism

New types are defined using the
datatype mechanism, which

specifies new data value constructors.

For example,

datatype color =
red|blue|green;

datatype color =
blue | green | red

Pattern matching works on user-
defined types using their
constructors:

fun translate red = "rot"
| translate blue = "blau"
| translate green = "gruen";

val translate =
fn : color -> string

CS 538 Spring 200%°

291

fun jumble red = blue
| jumble blue = green
| jumble green = red,;

val jumble = fn : color -> color
translate (jumble green);
val it = "rot" : string

SML Examples

Source code for most of the SML
examples presented here may be
found In

~cs538-1/public/sml/class.sml

CS 538 Spring 200%° 292

Parameterized Constructors

The constructors used to define data
types may be parameterized:
datatype money =

none
coin of int

bill of int

lou of real * string;

datatype money =
bill of int | coin of int
| lou of real * string | none

Now expressions like coin(25) or
bill(5) or iou(10.25,"Andy")
represent valid values of type money.

CS 538 Spring 200%° 203

We can also define values and
functions of type money:

val dime = coin(10);

val dime = coin 10 : money

val deadbeat =
lou(25.00,"Homer Simpson");

val deadbeat =
lou (25.0,"Homer Simpson") :
money

fun amount(none) = 0.0

amount(coin(cents)) =
real(cents)/100.0

amount(bill(dollars)) =
real(dollars)

| amount(iou(amt,)) =
0.5*amt;

val amount = fn : money -> real

CS 538 Spring 200%° 204

