Exception Handlers

You may catch an exception by
defining a handler for it:
(expr) handle exceptionl => vall
|| exception2 => val2
.
For example,

(sgroot ~100.0)
handle NegValue(v) =>

(sqrt (~v));

val it = 10.0 : real

S 538 Spring 2002 315

type 'a stack

val Null = - : 'a stack

exception EmptyStk

val empty = fn : 'a stack -> bool
val top =fn : 'a stack ->'a

val pop =fn:

'a stack -> 'a stack

val push = fn : 'a * 'a stack ->
'a stack

pop(Null);

uncaught exception EmptyStk
top(Null) handle EmptyStk => O;
valit =0 :int

€S 538 Spring 2002 317

Stacks Revisited

We can add an exception, EmptyStk ,
to our earlier stack type to handle
top Or pop operations on an empty
stack:

abstype 'a stack = stk of 'a list
with
val Null = stk([])
exception EmptyStk
fun empty(stk([])) = true
| empty(stk(_::)) = false
fun top(stk(h::_)) =h
| top(stk([l)) =
raise EmptyStk
fun pop(stk(_::t)) = stk(t)
| pop(stk([])) =
raise EmptyStk
fun push(v,stk(L)) =
stk(v::L)
end

€S 538 Spring 2007 316

User-Defined Operators

SML allows users to define symbolic
operators composed of non-
alphanumeric characters. This means
operator-like symbols can be created
and used. Care must be taken to avoid
predefined operators (like +, -, », @
etc.).

If we wish, we can redo our stack
definition using symbols rather than
identifiers.

We might choose the following
symbols:

top |=

pop <==

push ==>

null <@>

empty <?>

S 538 Spring 200 318

Now we can have expressions like
<> <@>;

val it = true : bool

|= (==>(1,<@>));

valit=1:int

Binary functions, like ==> (push) are
much more readable if they are infix.
That is, we'd like to be able to write

1==>24+3==><@>
which pushes 2+3, then 1 onto an
empty stack.

To make a function (either identifier
or symbolic) infix rather than prefix
we use the definition

infix level name
or
infixr level name

S 538 Spring 2002

319

The standard predefined operators
have the following precedence levels:

Level Operator

= <> < > <= >=

- @

+ - A

7 * | div mod

If we define ==> (push) as

infixr 2 ==>

then

1==>2+3==><@>

will work as expected, evaluating
expressions like 2+3 before doing any

pushes, with pushes done right to
left.

(o2& BN NGV

€S 538 Spring 2002

level is an integer representing the
“precedence” level of the infix
operator. 0 is the lowest precedence
level; higher precedence operators are
applied before lower precedence
operators (in the absence of explicit
parentheses).

infix defines a left-associative
operator (groups from left to right).
infixr ~ defines a right-associative
operator (groups from right to left).

Thus

fun cat(L1,L.2) = L1 @ L2;

infix 5 cat

makes cat a left associative infix

operator at the same precedence level
as @ We can now write

[1,2] cat [3,4,5] cat [6,7];
val it = [1,2,3,4,5,6,7] : int list

€S 538 Spring 2007 320

abstype 'a stack =
stk of 'a list

with
val <@> = stk([])
exception emptyStk
fun <?>(stk([])) = true
| <?>(stk(_::)) = false

fun |=(stk(h::_)) =h

| 1=(stk([D) =
raise emptyStk

fun <==(stk(_::t)) = stk(t)

| <==(stk([l)) =
raise emptyStk

fun ==>(v,stk(L)) =
stk(v::L)
infixr 2 ==>
end

S 538 Spring 200 322

type 'a stack
val <@> = - : 'a stack
exception emptyStk
val <?> = fn : 'a stack -> bool
val |==fn:'a stack ->'a
val<===1fn:

'a stack -> 'a stack

val ==>=1fn:’'a * 'a stack ->
'a stack

infixr 2 ==>
Now we can write

val myStack =
1==>2+3 ==> <@>;
val myStack = - : int stack
|= myStack;
valit=1:int

|= (<== myStack);
valit=5:int

S 538 Spring 2002

323

Thus

dupl op " "abc";

val it = "abcabc" : string
works fine.

€S 538 Spring 2002

325

Using Infix Operators as
Values

Sometimes we simply want to use an
infix operator as a symbol whose
value is a function.
For example, given
fun dupl f v = f(v,v);
val dupl =
fn:(a*a->bh)->a->"
we might try the call

dupl ~ "abc";
This fails because SML tries to parse
dupl and "abc" as the operands of .

To pass an operator as an ordinary
function value, we prefix it with op
which tells the SML compiler that the
following symbol is an infix operator.

€S 538 Spring 2007

324

The Case Expression

ML contains a case expression
patterned on switch and case
statements found in other languages.

As in function definitions, patterns
are used to choose among a variety of
values.

The general form of the case is
case expr of

pattern 1 =>expr 4|

pattern |, =>expr |

pattern ,=>expr
If no pattern matches, a Match
exception is thrown.

It is common to use _ (the wildcard)
as the last pattern in a case .

S 538 Spring 200

326

Examples include
case c of

red =>"rot" |
blue => "blau" |
green => "gruen";

case pair of

(1,) =>"win"
(2,.) =>"place" |
(3,) =>"show" |
(L) => "loser";

case intOption of
none =>0 |
some(v) =>v;

S 538 Spring 2002

327

The expression
ref ;= val
updates the heap location referenced

by ref to contain val . The unit value,
(O , Is returned.

Hence

val x = ref 0;

val x = ref 0 : int ref
IX;

valit=0:int

x:=1,

val it = () : unit

IX;

valit=1:int

€S 538 Spring 2002

329

Imperative Features of ML

ML provides references to heap
locations that may be updated. This is
essentially the same as access to heap
objects via references (Java) or
pointers (C and C++).

The expression

ref val

creates a reference to a heap location
initialized to val. For example,

ref O;

val it =ref O : int ref

The prefix operator ! fetches the value
contained in a heap location (just as *
dereferences a pointer in C or C++).
Thus

I (ref 0);

valit=0:int

€S 538 Spring 2007

328

