
315CS 538 Spring 2002
©

Exception Handlers
You may catch an exception by
defining a handler for it:
(expr) handle exception1 => val1
 || exception2 => val2
 || ... ;

For example,
(sqroot ~100.0)
 handle NegValue(v) =>
 (sqrt (~v));
val it = 10.0 : real

316CS 538 Spring 2002
©

Stacks Revisited
We can add an exception, EmptyStk ,
to our earlier stack type to handle
top or pop operations on an empty
stack:
abstype 'a stack = stk of 'a list
with
 val Null = stk([])
 exception EmptyStk
 fun empty(stk([])) = true
 | empty(stk(_::_)) = false
 fun top(stk(h::_)) = h
 | top(stk([])) =
 raise EmptyStk
 fun pop(stk(_::t)) = stk(t)
 | pop(stk([])) =
 raise EmptyStk
 fun push(v,stk(L)) =
 stk(v::L)
end

317CS 538 Spring 2002
©

type 'a stack
val Null = - : 'a stack
exception EmptyStk
val empty = fn : 'a stack -> bool
val top = fn : 'a stack -> 'a
val pop = fn :
 'a stack -> 'a stack
val push = fn : 'a * 'a stack ->
'a stack

pop(Null);
uncaught exception EmptyStk
top(Null) handle EmptyStk => 0;
val it = 0 : int

318CS 538 Spring 2002
©

User-Defined Operators
SML allows users to define symbolic
operators composed of non-
alphanumeric characters. This means
operator-like symbols can be created
and used. Care must be taken to avoid
predefined operators (like +, - , ^ , @,
etc.).
If we wish, we can redo our stack
definition using symbols rather than
identifiers.
We might choose the following
symbols:
top |=

pop <==

push ==>

null <@>

empty <?>

319CS 538 Spring 2002
©

Now we can have expressions like
<?> <@>;
val it = true : bool

|= (==> (1,<@>));
val it = 1 : int

Binary functions, like ==> (push) are
much more readable if they are infix.
That is, we’d like to be able to write
1 ==> 2+3 ==> <@>

which pushes 2+3 , then 1 onto an
empty stack.
To make a function (either identifier
or symbolic) infix rather than prefix
we use the definition
infix level name

or
infixr level name

320CS 538 Spring 2002
©

level is an integer representing the
“precedence” level of the infix
operator. 0 is the lowest precedence
level; higher precedence operators are
applied before lower precedence
operators (in the absence of explicit
parentheses).
infix defines a left-associative
operator (groups from left to right).
infixr defines a right-associative
operator (groups from right to left).
Thus
fun cat(L1,L2) = L1 @ L2;

infix 5 cat

makes cat a left associative infix
operator at the same precedence level
as @. We can now write
[1,2] cat [3,4,5] cat [6,7];
val it = [1,2,3,4,5,6,7] : int list

321CS 538 Spring 2002
©

The standard predefined operators
have the following precedence levels:
Level Operator
3 o

4 = <> < > <= >=

5 :: @

6 + - ^

7 * / div mod

If we define ==> (push) as
infixr 2 ==>

then
1 ==> 2+3 ==> <@>

will work as expected, evaluating
expressions like 2+3 before doing any
pushes, with pushes done right to
left.

322CS 538 Spring 2002
©

abstype 'a stack =
 stk of 'a list

with

 val <@> = stk([])

 exception emptyStk

 fun <?>(stk([])) = true

 | <?>(stk(_::_)) = false

 fun |=(stk(h::_)) = h

 | |=(stk([])) =
 raise emptyStk

 fun <==(stk(_::t)) = stk(t)

 | <==(stk([])) =
 raise emptyStk

 fun ==>(v,stk(L)) =
 stk(v::L)

 infixr 2 ==>

end

323CS 538 Spring 2002
©

type 'a stack

val <@> = - : 'a stack

exception emptyStk

val <?> = fn : 'a stack -> bool

val |= = fn : 'a stack -> 'a

val <== = fn :
 'a stack -> 'a stack

val ==> = fn : ’a * 'a stack ->
'a stack

infixr 2 ==>

Now we can write
val myStack =
 1 ==> 2+3 ==> <@>;
val myStack = - : int stack

|= myStack;
val it = 1 : int

|= (<== myStack);
val it = 5 : int

324CS 538 Spring 2002
©

Using Infix Operators as
Values

Sometimes we simply want to use an
infix operator as a symbol whose
value is a function.
For example, given
fun dupl f v = f(v,v);
val dupl =

fn : ('a * 'a -> 'b) -> 'a -> 'b

we might try the call
dupl ^ "abc";

This fails because SML tries to parse
dupl and "abc" as the operands of ^ .
To pass an operator as an ordinary
function value, we prefix it with op
which tells the SML compiler that the
following symbol is an infix operator.

325CS 538 Spring 2002
©

Thus
dupl op ^ "abc";
val it = "abcabc" : string

works fine.

326CS 538 Spring 2002
©

The Case Expression
ML contains a case expression
patterned on switch and case
statements found in other languages.
As in function definitions, patterns
are used to choose among a variety of
values.
The general form of the case is
case expr of

 pattern 1 => expr 1|

 pattern n => expr 2|

 ...

 pattern n => expr n;

If no pattern matches, a Match
exception is thrown.
It is common to use _ (the wildcard)
as the last pattern in a case .

327CS 538 Spring 2002
©

Examples include
case c of

 red => "rot" |

 blue => "blau" |

 green => "gruen";

case pair of

 (1,_) => "win" |

 (2,_) => "place" |

 (3,_) => "show" |

 (_,_) => "loser";

case intOption of

 none => 0 |

 some(v) => v;

328CS 538 Spring 2002
©

Imperative Features of ML
ML provides references to heap
locations that may be updated. This is
essentially the same as access to heap
objects via references (Java) or
pointers (C and C++).
The expression
ref val

creates a reference to a heap location
initialized to val. For example,
 ref 0;
 val it = ref 0 : int ref

The prefix operator ! fetches the value
contained in a heap location (just as *
dereferences a pointer in C or C++).
Thus
 ! (ref 0);
 val it = 0 : int

329CS 538 Spring 2002
©

The expression
ref := val

updates the heap location referenced
by ref to contain val . The unit value,
() , is returned.
Hence
val x = ref 0;
val x = ref 0 : int ref

!x;
val it = 0 : int

x:=1;
val it = () : unit

!x;
val it = 1 : int

