Sequential Composition

EXpI’ESSiOﬂS or statements are
sequenced using “; . Hence
val a = (1+2;3+4);

vala=7:int

(x:=1;!x);

valit=1:int

Iteration

while exprl do expr2

implements iteration (and returns
unit); Thus

(while false do 10);

val it = () : unit

while !Ix > 0 do x:= Ix-1;

val it = () : unit

IX;

valit=0:int

Simple 1/0O

The function

print;

val it = fn : string -> unit

prints a string onto standard output.
For example,

print("Hello World\n");

Hello World

The conversion routines
Real.toString;

val it = fn : real -> string

Int.toString;

val it = fn : int -> string

Bool.toString;

val it = fn : bool -> string

convert a value (real ,int or bool)
into a string . Unlike Java, the call
must be explicit.

S 538 Spring 2002

€S 538 Spring 2007

331

For example,

print(Int.toString(123));
123

Also available are

Real.fromString;

val it = fn : string -> real

option

Int.fromString;

val it = fn ; string -> int

option

Bool.fromString;

val it = fn : string -> bool

option

which convert from a string to a
real orint or bool ifpossible.

(That’s why the option type is used).

For example,

case (Int.fromString("123"))
of

SOME(i) =>i | NONE => 0;
val it =123 :int
case (Int.fromString(
"One two three")) of
SOME(i) =>i | NONE => 0;
valit=0:int

€S 538 Spring 2002

S 538 Spring 200

333

Text 1/0

The structure TextlO contains a wide
variety of 1/0 types, values and
functions. You load these by entering:
open TextlO;

Among the values loaded are

. type instream
This is the type that represents input
text files.

. type outstream
This is the type that represents
output text files.

. type vector = string
Makes vector a synonym for
string.

. type elem = char
Makes elem a synonym for char .

S 538 Spring 2007 234

val s = input(stdin);
Hello!
val s = "Hello\n" : vector

. val inputN :
instream * int -> vector
Read the next N input characters into
a string . For example,
val t = inputN(stdIn,3);
abcde
val t = "abc" : vector

. val inputAll :
instream -> vector
Read the rest of the input file into a
string (with newlines separating
lines). For example,
val u = inputAll(stdin);
Four score and
seven years ago ...

val u = "Four score and\nseven
years ago ...\n" : vector

€S 538 Spring 2002 336

. val stdin : instream
val stdOut : outstream
val stdErr : outstream
Predefined input and output streams.

. val openin :
string -> instream
val openOut :
string -> outstream
Open an input or output stream.
For example,
val out =
openOut("/tmp/test1");
val out = - : outstream

. val input :
instream -> vector
Read a line of input into a string
(vector is defined as equivalent to
string). For example (user input is
in red):

€S 538 Spring 2007 335

. val endOfStream :
instream -> bool
Are we at the end of this input
stream?

. val output :
outstream * vector -> unit
Output a string on the specified
output stream. For example,
output(stdOut,
"That’s all folks'\n");
That'’s all folks!

S 538 Spring 200

String Operations

ML provides a wide variety of string
manipulation routines. Included are:

. The string concatenation operator, *
"abc" ~ "def" = "abcdef"

. The standard 6 relational operators:
< > <= >= = <>

. The string size operator:
val size : string -> int
size ("abcd");
valit=4:int
. The string subscripting operator
(indexing from 0):
val sub =
fn : string * int -> char
sub("abcde",2);
val it = #"c" : char

S 538 Spring 2002 338

. Convert a character into a string:
str : char -> string
For example,
str(#"x");
val it = "X" : string

. “Explode” a string into a list of
characters:
explode : string -> char list
For example,
explode("abcde");
val it =
[#'a" #'b" #'c" #'d" #'e"] :
char list

- “Implode” a list of characters into a
string.
implode : char list -> string
For example,
implode
[#'a" #'b" #'c" #'d"#"'e"];
val it = "abcde" : string

€S 538 Spring 2002 340

. The substring function
val substring :
string * int * int -> string
This function is called as
substring(string,start,len)
start is the starting position,
counting from O.
len is the length of the desired
substring. For example,
substring("abcdefghij",3,4)
val it = "defg" : string

. Concatenation of a list of strings into
a single string:
concat :
string list -> string
For example,
concat ["What's"," up","?"];
val it = "What's up?" : string

€S 538 Spring 2007 339

Structures and Signatures

In C++ and Java you can group
variable and function definitions into
classes. In Java you can also group
classes into packages.

In ML you can group value, exception
and function definitions into
structures.

You can then import selected
definitions from the structure (using
the notation structure.name) or
you can open the structure, thereby
importing all the definitions within
the structure.

(Examples used in this section may be
found at
~cs538-1/public/sml/struct.sml)

S 538 Spring 200 341

The general form of a structure
definition is

structure name =

struct

val, exception and
fun definitions

end

For example,

structure Mapping =
struct
exception NotFound;
val create = [];

fun lookup(key,[]) =
raise NotFound

| lookup(key,
(keyl,valuel)::rest) =
if key = keyl
then valuel
else lookup(key,rest);

S 538 Spring 2007 242

Signatures

Each structure has a signature, which
is it type.
For example, Mapping ’s signature is
structure Mapping :
sig
exception NotFound
val create : 'a list

val insert: "a*'b *
("a*'b) list ->
("a*'b) list

val lookup : "a *
("fa*'b) list->"'b

end

€S 538 Spring 2002 344

fun insert(key,value,[]) =
[(key,value)]

| insert(key,value,
(keyl,valuel)::rest) =
if key = keyl
then (key,value)::rest
else (keyl,valuel):
insert(key,value,rest);
end;

We can access members of this
structure as Mapping.name . Thus
Mapping.insert(538,"languages”,[]);
val it = [(538,"languages”)] :
(int * string) list
open Mapping;
exception NotFound
val create : 'a list
val insert: "a * 'b * ("a * 'b)
list -> ("a * 'b) list
val lookup : "a * ("a * 'b)
list->"'b

€S 538 Spring 2007 243

You can define a signature as

signature name = sig
type definitions for values,
functions and exceptions
end

For example,
signature Str2IntMapping =
sig

exception NotFound;

val lookup:
string * (string*int) list
->int;
end;

S 538 Spring 200 345

Signatures can be used to

. Restrict the type of a value or
function in a structure.

. Hide selected definitions that appear
in a structure

For example
structure Str2IntMap :

Str2IntMapping = Mapping;
defines a new structure, Str2intMap
created by restricting Mapping to the
Str2IntMapping signature. When
we do this we get

open Str2IntMap;

exception NotFound

val lookup : string *

(string * int) list -> int
Only lookup and NotFound are
created, and lookup is limited to keys
that are strings.

S 538 Spring 2002

346

It isn’t, and to see why consider the
following ML definition of a merge
sort. A merge sort operates by first
splitting a list into two equal length
sublists. The following function does
this:
fun split [= ({I.0)
| split [a] = ([a].[)
| split (a::b::rest) =
let val (left,right) =
split(rest) in
(a::left, b::right)
end;
After the input list is split into two
halves, each half is recursively sorted,
then the sorted halves are merged
together into a single list.

The following ML function merges
two sorted lists into one:

€S 538 Spring 2002

348

Extending ML’s Polymorphism

In languages like C++ and Java we
must use types like void* or Object
to simulate the polymorphism that
ML provides. In ML whenever possible
a general type (a polytype) is used
rather than a fixed type. Thus in
funlen([]) =0

| len(a::b) = 1 + len(b);
we get a type of

‘a list -> int
because this is the most general type

possible that is consistent with len s
definition.

Is this form of polymorphism general
enough to capture the general idea of
making program definitions as type-
independent as possible?

€S 538 Spring 2007

347

fun merge([],[1) =]
| merge([],hd::tl) = hd::tl
| merge(hd::tl,[]) = hd::tl
| merge(hd::tl,h::t) =
if hd <=h
then hd::merge(tl,h::t)
else h::merge(hd::tl,t)
With these two subroutines, a
definition of a sort is easy:

funsort[] =]
| sort([a]) = [a]
| sort(a::b::rest) =
let val (left,right) =
split(a::b::rest) in
merge(sort(left),
sort(right))
end;

S 538 Spring 200

349

This definition looks very general—it
should work for a list of any type.

Unfortunately, when ML types the
functions we get a surprise:

val split =fn : 'a list ->

‘a list * 'a list

val merge =fn :int list *

int list -> int list

val sort =fn :

int list -> int list

split is polymorphic, but merge and
sort are limited to integer lists!

Where did this restriction come from?

S 538 Spring 2002

350

funsortle[] =]
| sortle [a] =[a]
| sortle (a::b:rest) =

let val (left,right) =

split(a::b::rest) in
merge(le, sort le left,
sort le right)
end;

Now the types of merge and sort
are:

val merge =fn :

(‘a*'a->boal) *

‘a list * 'a list -> 'a list
val sort = fn : (‘a * 'a -> bool)

-> 'a list -> 'a list

We can now “customize” sort by
choosing a particular definition for
the le parameter:
funle(a,b) =a <=b;
val le = fn : int * int -> bool

€S 538 Spring 2002

The problem is that we did a
comparison in merge using the <=
operator, and ML typed this as an
integer comparison.

We can make our definition of sort
more general by adding a comparison
function, le(a,b) as a parameter to
merge and sort . If we curry this
parameter we may be able to hide it
from end users. Our updated
definitions are:
fun merge(le,[1.[]) =]
| merge(le,[],hd::tl) = hd::tl
| merge(le,hd::tl,[]) = hd::tl
| merge(le,hd::tl,h::t) =

if le(hd,h)

then hd::merge(le,tl,h::t)

else h::merge(le,hd::tl,t)

€S 538 Spring 2007

351

fun intsort L = sort le L;
val intsort =
fn :int list -> int list
intsort(
[4,9,0,2,111,~22,8,~123));
val it = [~123,~22,0,2,4,8,9,111]
sint list
fun strle(a:string,b) =
a<=b;
val strle =
fn : string * string -> bool
fun strsort L = sort strle L;
val strsort =
fn : string list -> string list
strsort(
['aac","aaa","ABC","123"));
val it =
['123","ABC","aaa","aac"] :
string list

S 538 Spring 200

353

