
330CS 538 Spring 2002
©

Sequential Composition
Expressions or statements are
sequenced using “; ”. Hence
val a = (1+2;3+4);
val a = 7 : int

(x:=1;!x);
val it = 1 : int

Iteration
while expr1 do expr2

implements iteration (and returns
unit); Thus
(while false do 10);
val it = () : unit

while !x > 0 do x:= !x-1;
val it = () : unit

!x;
val it = 0 : int

331CS 538 Spring 2002
©

Simple I/O
The function
 print;

 val it = fn : string -> unit

prints a string onto standard output.
For example,
print("Hello World\n");

 Hello World

The conversion routines
 Real.toString;
 val it = fn : real -> string

 Int.toString;
 val it = fn : int -> string

 Bool.toString;
 val it = fn : bool -> string

convert a value (real , int or bool)
into a string . Unlike Java, the call
must be explicit.

332CS 538 Spring 2002
©

For example,
print(Int.toString(123));
123

Also available are
Real.fromString;
val it = fn : string -> real
option

Int.fromString;
val it = fn : string -> int
option

Bool.fromString;
val it = fn : string -> bool
option

which convert from a string to a
real or int or bool if possible.
(That’s why the option type is used).

333CS 538 Spring 2002
©

For example,
case (Int.fromString("123"))
 of

 SOME(i) => i | NONE => 0;
val it = 123 : int

case (Int.fromString(
 "One two three")) of

 SOME(i) => i | NONE => 0;
val it = 0 : int

334CS 538 Spring 2002
©

Text I/O
The structure TextIO contains a wide
variety of I/O types, values and
functions. You load these by entering:
open TextIO;

Among the values loaded are
• type instream

This is the type that represents input
text files.

• type outstream
This is the type that represents
output text files.

• type vector = string
Makes vector a synonym for
string.

• type elem = char
Makes elem a synonym for char .

335CS 538 Spring 2002
©

• val stdIn : instream
val stdOut : outstream
val stdErr : outstream
Predefined input and output streams.

• val openIn :
 string -> instream
val openOut :
 string -> outstream
Open an input or output stream.
For example,
val out =
 openOut("/tmp/test1");
val out = - : outstream

• val input :
 instream -> vector
Read a line of input into a string
(vector is defined as equivalent to
string). For example (user input is
in red):

336CS 538 Spring 2002
©

val s = input(stdIn);
Hello!

 val s = "Hello!\n" : vector

• val inputN :
 instream * int -> vector
Read the next N input characters into
a string . For example,
val t = inputN(stdIn,3);
abcde

val t = "abc" : vector

• val inputAll :
 instream -> vector
Read the rest of the input file into a
string (with newlines separating
lines). For example,
val u = inputAll(stdIn);

 Four score and
 seven years ago ...
 val u = "Four score and\nseven
 years ago ...\n" : vector

337CS 538 Spring 2002
©

• val endOfStream :
 instream -> bool
Are we at the end of this input
stream?

• val output :
 outstream * vector -> unit
Output a string on the specified
output stream. For example,
output(stdOut,
 "That’s all folks!\n");
That’s all folks!

338CS 538 Spring 2002
©

String Operations
ML provides a wide variety of string
manipulation routines. Included are:
• The string concatenation operator, ^

"abc" ^ "def" = "abcdef"

• The standard 6 relational operators:
 < > <= >= = <>

• The string size operator:
val size : string -> int
size ("abcd");
val it = 4 : int

• The string subscripting operator
(indexing from 0):
val sub =
 fn : string * int -> char
sub("abcde",2);
val it = #"c" : char

339CS 538 Spring 2002
©

• The substring function
val substring :
string * int * int -> string
This function is called as
substring(string,start,len)
start is the starting position,
counting from 0.
len is the length of the desired
substring. For example,
substring("abcdefghij",3,4)
val it = "defg" : string

• Concatenation of a list of strings into
a single string:
concat :
 string list -> string
For example,
concat ["What’s"," up","?"];
val it = "What’s up?" : string

340CS 538 Spring 2002
©

• Convert a character into a string:
str : char -> string
For example,
 str(#"x");

val it = "x" : string

• “Explode” a string into a list of
characters:
explode : string -> char list
For example,
explode("abcde");
val it =
[#"a",#"b",#"c",#"d",#"e"] :
char list

• “Implode” a list of characters into a
string.
implode : char list -> string
For example,
implode
[#"a",#"b",#"c",#"d",#"e"];
val it = "abcde" : string

341CS 538 Spring 2002
©

Structures and Signatures
In C++ and Java you can group
variable and function definitions into
classes. In Java you can also group
classes into packages.
In ML you can group value, exception
and function definitions into
structures.
You can then import selected
definitions from the structure (using
the notation structure.name) or
you can open the structure, thereby
importing all the definitions within
the structure.
(Examples used in this section may be
found at
~cs538-1/public/sml/struct.sml)

342CS 538 Spring 2002
©

The general form of a structure
definition is
structure name =
struct

 val, exception and
 fun definitions

end

For example,
structure Mapping =
struct
 exception NotFound;
 val create = [];
 fun lookup(key,[]) =
 raise NotFound
 | lookup(key,
 (key1,value1)::rest) =
 if key = key1
 then value1
 else lookup(key,rest);

343CS 538 Spring 2002
©

 fun insert(key,value,[]) =
 [(key,value)]
 | insert(key,value,
 (key1,value1)::rest) =
 if key = key1
 then (key,value)::rest
 else (key1,value1)::
 insert(key,value,rest);
end;

We can access members of this
structure as Mapping.name . Thus
Mapping.insert(538,"languages",[]);

val it = [(538,"languages")] :
(int * string) list

open Mapping;
exception NotFound

val create : 'a list

val insert : ''a * 'b * (''a * 'b)
 list -> (''a * 'b) list

val lookup : ''a * (''a * 'b)
list -> 'b

344CS 538 Spring 2002
©

Signatures
Each structure has a signature, which
is it type.
For example, Mapping ’s signature is
structure Mapping :

 sig

 exception NotFound

 val create : 'a list

 val insert : ''a * 'b *
 (''a * 'b) list ->
 (''a * 'b) list

 val lookup : ''a *
 (''a * 'b) list -> 'b

 end

345CS 538 Spring 2002
©

You can define a signature as
signature name = sig

 type definitions for values,
 functions and exceptions

end

For example,
signature Str2IntMapping =
sig
 exception NotFound;
 val lookup:

string * (string*int) list
 -> int;

end;

346CS 538 Spring 2002
©

Signatures can be used to
• Restrict the type of a value or

function in a structure.

• Hide selected definitions that appear
in a structure

For example
structure Str2IntMap :

Str2IntMapping = Mapping;

defines a new structure, Str2IntMap ,
created by restricting Mapping to the
Str2IntMapping signature. When
we do this we get
open Str2IntMap;
 exception NotFound

 val lookup : string *
 (string * int) list -> int

Only lookup and NotFound are
created, and lookup is limited to keys
that are strings.

347CS 538 Spring 2002
©

Extending ML’s Polymorphism
In languages like C++ and Java we
must use types like void* or Object
to simulate the polymorphism that
ML provides. In ML whenever possible
a general type (a polytype) is used
rather than a fixed type. Thus in
fun len([]) = 0

 | len(a::b) = 1 + len(b);

we get a type of
 'a list -> int

because this is the most general type
possible that is consistent with len ’s
definition.
Is this form of polymorphism general
enough to capture the general idea of
making program definitions as type-
independent as possible?

348CS 538 Spring 2002
©

It isn’t, and to see why consider the
following ML definition of a merge
sort. A merge sort operates by first
splitting a list into two equal length
sublists. The following function does
this:
fun split [] = ([],[])
 | split [a] = ([a],[])
 | split (a::b::rest) =
 let val (left,right) =
 split(rest) in
 (a::left, b::right)
 end;

After the input list is split into two
halves, each half is recursively sorted,
then the sorted halves are merged
together into a single list.
The following ML function merges
two sorted lists into one:

349CS 538 Spring 2002
©

fun merge([],[]) = []
 | merge([],hd::tl) = hd::tl
 | merge(hd::tl,[]) = hd::tl
 | merge(hd::tl,h::t) =
 if hd <= h
 then hd::merge(tl,h::t)
 else h::merge(hd::tl,t)

With these two subroutines, a
definition of a sort is easy:
fun sort [] = []
 | sort([a]) = [a]
 | sort(a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(sort(left),

sort(right))
 end;

350CS 538 Spring 2002
©

This definition looks very general—it
should work for a list of any type.
Unfortunately, when ML types the
functions we get a surprise:
val split = fn : 'a list ->
 'a list * 'a list
val merge = fn : int list *
 int list -> int list
val sort = fn :
 int list -> int list

split is polymorphic, but merge and
sort are limited to integer lists!
Where did this restriction come from?

351CS 538 Spring 2002
©

The problem is that we did a
comparison in merge using the <=
operator, and ML typed this as an
integer comparison.
We can make our definition of sort
more general by adding a comparison
function, le(a,b) as a parameter to
merge and sort . If we curry this
parameter we may be able to hide it
from end users. Our updated
definitions are:
fun merge(le,[],[]) = []
 | merge(le,[],hd::tl) = hd::tl
 | merge(le,hd::tl,[]) = hd::tl
 | merge(le,hd::tl,h::t) =
 if le(hd,h)
 then hd::merge(le,tl,h::t)
 else h::merge(le,hd::tl,t)

352CS 538 Spring 2002
©

fun sort le [] = []
 | sort le [a] = [a]
 | sort le (a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(le, sort le left,

sort le right)
 end;

Now the types of merge and sort
are:
val merge = fn :
 ('a * 'a -> bool) *
 'a list * 'a list -> 'a list
val sort = fn : ('a * 'a -> bool)
 -> 'a list -> 'a list

We can now “customize” sort by
choosing a particular definition for
the le parameter:
fun le(a,b) = a <= b;
val le = fn : int * int -> bool

353CS 538 Spring 2002
©

fun intsort L = sort le L;
val intsort =
 fn : int list -> int list
intsort(
 [4,9,0,2,111,~22,8,~123]);
val it = [~123,~22,0,2,4,8,9,111]
: int list

fun strle(a:string,b) =
 a <= b;
val strle =
 fn : string * string -> bool

fun strsort L = sort strle L;
val strsort =

fn : string list -> string list
strsort(
 ["aac","aaa","ABC","123"]);
val it =
["123","ABC","aaa","aac"] :
string list

