Making the comparison relation an
explicit parameter works, but it is a
bit ugly and inefficient. Moreover, if
we have several functions that
depend on the comparison relation,
we need to ensure that they all use
the same relation. Thus if we wish to
define a predicate inOrder that tests
if a list is already sorted, we can use:
fun inOrder le [] = true

| inOrder le [a] = true

| inOrder le (a::b::rest) =

le(a,b) andalso
inOrder le (b::rest);

val inOrder =fn :

(‘a*'a ->bool) ->'a list ->

bool
Now sort and inOrder need to use
the same definition of le . But how
can we enforce this?

S 538 Spring 2002

fun sort [] =]
| sort([a]) = [a]
| sort(a::b::rest) =
let val (left,right) =
split(a::b::rest) in
merge(sort(left),
sort(right))
end;

fun inOrder [] = true
| inOrder [a] = true
| inOrder (a::b::rest) =
le(a,b) andalso
inOrder (b::rest);
end;
structure Sorting :
sig
val inOrder : int list -> bool
val le : int * int -> bool
val merge : int list *
int list -> int list

val sort :
int list -> int list

€S 538 Spring 2002

356

The structure mechanism we studied
earlier can help. We can put a single
definition of le in the structure, and
share it:
structure Sorting =
struct

funle(a,b) = a <=b;

fun split [= ([I.[])
| split [a] = ([a].[])
| split (a::b::rest) =
let val (left,right) =
split rest in
(a::left,b::right)
end;
fun merge([l,[) = [l
| merge([],hd::tl) = hd::tl
| merge(hd::tl,[]) = hd::tl
| merge(hd::tl,h::t) =
if le(hd,h)
then hd::merge(tl,h::t)
else h::merge(hd::tl,t)

€S 538 Spring 2007 355

val split : 'a list ->
‘a list * 'a list
end
To sort a type other than integers, we
replace the definition of le in the
structure.

But rather than actually edit that
definition, ML gives us a powerful
mechanism to parameterize a
structure. This is the functor, which
allows us to use one or more
structures as parameters in the
definition of a structure.

S 538 Spring 200 357

Functors

The general form of a functor is

functor name
(structName:signature) =
structure definition;

This functor will create a specific
version of the structure definition
using the structure parameter passed
to it.

For our purposes this is ideal—we pass
in a structure defining an ordering
relation (the le function). This then
creates a custom version of all the
functions defined in the structure
body, using the specific le definition
provided.

S 538 Spring 2002 358

functor MakeSorting(O:Order) =
struct
open O; (* makes le available*)
fun split [] = ([1.)
| split [a] = ([a].)
| split (a::b::rest) =
let val (left,right) =
split rest in
(a::left,b::right)
end;

fun merge([l,[) = [I
| merge([],hd::tl) = hd::tl
| merge(hd::tl,[]) = hd::tl
| merge(hd::tl,h::t) =
if le(hd,h)
then hd::merge(tl,h::t)
else h::merge(hd::tl,t)

€S 538 Spring 2002 360

We first define
signature Order =
sig
type elem
val le : elem*elem -> bool
end;
This defines the type of a structure
that defines a le predicate defined on
a pair of types called elem .

An example of such a structure is
structure IntOrder:Order =
struct

type elem = int;

funle(a,b) = a <=b;
end;
Now we just define a functor that
creates a Sorting structure based on
an Order structure:

€S 538 Spring 2007 350

funsort[] =]

| sort([a]) = [a]

| sort(a:b::rest) =
let val (left,right) =
split(a::b::rest) in

merge(sort(left),
sort(right))

end;

fun inOrder [] = true
| inOrder [a] = true
| inOrder (a::b::rest) =
le(a,b) andalso
inOrder (b::rest);
end;

S 538 Spring 200 361

Now
structure IntSorting =
MakeSorting(IntOrder);
creates a custom structure for sorting
integers:

IntSorting.sort [3,0,~22,8];

val it = [~22,0,3,8] : elem list
To sort strings, we just define a
structure containing an le defined
for strings with Order as its
signature (i.e., type) and pass it to
MakeSorting
structure StrOrder:Order =
struct

type elem = string

fun le(a:string,b) = a <=b;
end;

S 538 Spring 2002

362

The SML Basis Library

SML provides a wide variety of useful
types and functions, grouped into
structures, that are included in the
Basis Library.

A web page fully documenting the
Basis Library is linked from the ML
page that is part of the Programming
Languages Links page on the CS 538
home page.

Many useful types, operators and
functions are “preloaded” when you
start the SML compiler. These are
listed in the “Top-level Environment”
section of the Basis Library
documentation.

Many other useful definitions must
be explicitly fetched from the
structures they are defined in.

€S 538 Spring 2002

structure StrSorting =
MakeSorting(StrOrder);
StrSorting.sort(
[*cc”,"abc","xyz"));
val it = ["abc","cc","xyz"] :
StrOrder.elem list
StrSorting.inOrder(
['cc","abc","xyz"));
val it = false : bool
StrSorting.inOrder(
[3,0,~22,8]);
stdIn:593.1-593.32 Error:

operator and operand don’t agree
[literal]

operator domain: strOrder.elem
list
operand: int list
in expression:

StrSorting.inOrder (3 :: 0 ::
~22 1 <exp> :: <exp>)

CS 538 Sprin

g 2005

363

For example, the Math structure
contains a number of useful

mathematical values and operations.

You may simply enter
open Math;

while will load all the definitions in
Math . Doing this may load more
definitions than you want. What'’s
worse, a definition loaded may
redefine a definition you currently
want to stay active. (Recall that ML
has virtually no overloading, so
functions with the same name in
different structures are common.)

A more selective way to access a
definition is to qualify it with the
structure’s name. Hence

Math.pi;

val it = 3.14159265359 : real

S 538 Spring 200

365

gets the value of pi defined in Math.
Should you tire of repeatedly
qualifying a name, you can (of
course) define a local value to hold its
value. Thus

val pi = Math.pi;

val pi = 3.14159265359 : real

works fine.

S 538 Spring 2002 366

« IntInf

Operations for an unbounded precision
integer type.

- Real
Operations for the real type.
. Math

Various mathematical values and
operations.

. List

Operations for the list type.
. ListPair

Operations on pairs of lists.
- Vector

A polymorphic type for immutable
(unchangeable) sequences.

. IntVector, RealVector,
BoolVector, CharVector

Monomorphic types for immutable
sequences.

€S 538 Spring 2002 368

An Overview of Structures in
the Basis Library

The Basis Library contains a wide
variety of useful structures. Here is an
overview of some of the most
important ones.
- Option

Operations for the option type.
- Bool

Operations for the bool type.
. Char

Operations for the char type.
. String

Operations for the string type.
- Byte

Operations for the byte type.
- Int

Operations for the int type.

€S 538 Spring 2007

367

- Array

A polymorphic type for mutable
(changeable) sequences.

- IntArray, RealArray,
BoolArray, CharArray

Monomorphic types for mutable
sequences.

- Array2

A polymorphic 2 dimensional mutable
type.
- IntArray2, RealArray2,
BoolArray2, CharArray2

Monomorphic 2 dimensional mutable
types.
- TextlO

Character-oriented text 10.
- BinlO
Binary 10 operations.
- OS, Unix, Date, Time, Timer
Operating systems types and operations.

S 538 Spring 200

369

ML Type Inference

One of the most novel aspects of ML is
the fact that it infers types for all user
declarations.

How does this type inference mechanism
work?

Essentially, the ML compiler creates an
unknown type for each declaration the
user makes. It then solves for these
unknowns using known types and a set
of type inference rules. That is, for a
user-defined identifier i , ML wants to
determine T(i) , the type of i .

S 538 Spring 2002 370

4. In a conditional
(if E1 then E2 else E3)
we know that
T(E1) = bool ,
T(E2) = T(E3) = T(conditional)

5. In a function call

(fx)
we know that if T() ='a->'b
thenT(x) ='a and T(fx) ="

6. In a function definition
fun f x = expr;
iftx)y ='a and T(expr) ='b
then T(H) ='a->"b
7.Inatuple (e 1€ 5, ..., € n)
if we know that T(e;) ='a;
then Te 1€ 5, ..., € n) =
‘a 1Ma o*..¥a

I
=
IN
IA
=)

€S 538 Spring 2002 372

The type inference rules are:

1. The types of all predefined literals,
constants and functions are known in
advance. They may be looked-up and
used. For example,

2 :int
true : bool
0 :ralist

D'a*'alist -> 'a list
2. All occurrences of the same symbol
(using scoping rules) have the same
type.
3. In the expression
1=J
we know T(l) =T@) .

€S 538 Spring 2007 n

8. In a record
{a=e q,b=e,, ..}
if Te;) ='a; 1<i <n then
the type of the record =
{fa'a q,b'a 5, ..}

O.Inalistv Vv, ..v]
if we know that T(v;) ='a; 1<i <n
then we know that
'a ;='a ,=..='a ,and
T(v 1.V, ...V) ='aqlist

S 538 Spring 200 373

To Solve for Types:

1. Assign each untyped symbol its own
distinct type variable.

2. Use rules (1) to (9) to solve for and
simplify unknown types.

3. Verify that each solution “works”
(causes no type errors) throughout the
program.

Examples

Consider

fun fact(n)=
if n=1 then 1 else n*fact(n-1);

To begin, we’'ll assign type variables:

T(fact) ='a->'b
(fact is a function)
T(n)="c

S 538 Spring 2002

A Polymorphic Function:
fun leng(L) =
ifL=1]
then O
else 1+len(tl L);

To begin, we know that

T([) =‘alist and

T@) ='blist-> b list

We assign types to leng and L:
T(leng)
TL) ='e
Since L is the argument of leng ,
'e ='c

From the expression L=]
'e ='alist

='c->'4d

we know

Now we begin to solve for the types
'a,'b and'c must represent.

We know (rule 5) that 'c ='a since
n is the argument of fact .

We know (rule 3) that'c =T(1) =
int since n=1 is part of the definition.

We know (rule 4) that T(1) = T(if
expression) ='b since the if
expression is the body of fact .

Thus, we have

‘a='b ='¢c =int , SO

T(fact) =int->int

T(n) =int

These types are correct for all

occurrences of fact and n in the
definition.

€S 538 Spring 2007 375

S 538 Spring 2007

376

From the fact that 0 is the result of
the then, we know the if returns an
int ,S0'd =int .

Thus T(leng) = "'a list -> int and
T(L) = 'alist

These solutions are type correct
throughout the definition.

€S 538 Spring 2002 377

Type Inference for Patterns

Type inference works for patterns too.
Consider

funleng[]=0

| leng (a::b) =1 +leng b;

We first create type variables:
T(leng) ='a->'b

T@)='c

T(b) = d

Fromleng [] we conclude that
'‘a="elist

Fromleng [=0 we conclude that
b =int

From leng (a::b) we conclude that
'c='e and'd ='elist

Thus we have

T(leng) = "e list -> int

S 538 Spring 2002 378

Not Everything can be
Automatically Typed in ML

Let’s try to type
funfx = (X x);

We assume
TH='a->"b
t(x)="c

Now (as usual) 'a ='c since x is the
argument of f .

From the call (x x) we conclude that
'c must be of the form 'd ->'e
(since x is being used as a function).

Moreover, 'c ='d since x IS an
argument in (x x)

Thus 'c ='d ->'e = 'c ->'e

But'c = 'c->e has no solution, so
in ML this definition is invalid. We

€S 538 Spring 2002 380

T@) ="'e

T(b) ="e list

This solution is type correct
throughout the definition.

CS 538 Sprin

g 2005 379

can't pass a function to itself as an
argument—the type system doesn’t
allow it.

In Scheme this is allowed:

(define (f) (x x))

but a call like

(fh)

certainly doesn’t do anything good!

S 538 Spring 200 381

Type Unions

Let’s try to type

funfg=((g 3), (g true));
Now the type of gis'a->'b since g
is used as a function.

The call (g 3) says'a =int and the
call (gtrue) says'a = boolean .

Does this mean g is polymorphic?
That is, is the type of f

f: (a->'b)->'b*b ?

NO!

All functions have the type 'a ->'b
but not all functions can be passed to
f.

Consider not: bool->bool
The call (not3) is certainly illegal.

S 538 Spring 2002

382

Finally, note that in a definition like

let

val f=

fn x => x (* id function*)

in (f 3,ftrue)
end,;
type inference works fine:
val it = (3,true) : int * bool
Here we define f in advance, so its
type is known when calls to it are
seen.

€S 538 Spring 2002

What we’d like in this case is a union
type. That is, we’d like to be able to
type g as (int|bool)->'b which ML
doesn’t allow.
Fortunately, ML does allow type
constructors, which are just what we
need.
Given
datatype T =

| of int|B of bool;
we can redefine f as
funfg=

(9 (I(3)), g (B(true)));
val f = fn : (T -> 'a)

-> 'a * 'a

€S 538 Spring 2007 283

