
354CS 538  Spring 2002
©

Making the comparison relation an
explicit parameter works, but it is a
bit ugly and inefficient. Moreover, if
we have several functions that
depend on the comparison relation,
we need to ensure that they all use
the same relation. Thus if we wish to
define a predicate inOrder that tests
if a list is already sorted, we can use:
fun inOrder le [] = true
 |  inOrder le [a] = true
 |  inOrder le (a::b::rest) =
     le(a,b) andalso
       inOrder le (b::rest);
val inOrder = fn :
 ('a * 'a -> bool) -> 'a list ->
  bool

Now sort  and inOrder  need to use
the same definition of le . But how
can we enforce this?

355CS 538  Spring 2002
©

The structure mechanism we studied
earlier can help. We can put a single
definition of le  in the structure, and
share it:
structure Sorting =
struct
  fun le(a,b) = a <= b;

  fun split [] = ([],[])
   |  split [a] = ([a],[])
   |  split (a::b::rest) =
      let val (left,right) =
        split rest in

(a::left,b::right)
      end;
  fun merge([],[]) = []
   |  merge([],hd::tl) = hd::tl
   |  merge(hd::tl,[]) = hd::tl
   |  merge(hd::tl,h::t) =
      if le(hd,h)
      then hd::merge(tl,h::t)
      else h::merge(hd::tl,t)

356CS 538  Spring 2002
©

  fun sort [] = []
   |  sort([a]) = [a]
   |  sort(a::b::rest) =
      let val (left,right) =
        split(a::b::rest) in
         merge(sort(left),
               sort(right))
      end;

  fun inOrder [] = true
   |  inOrder [a] = true
   |  inOrder (a::b::rest) =
       le(a,b) andalso
        inOrder (b::rest);
end;

structure Sorting :
 sig

val inOrder : int list -> bool

   val le : int * int -> bool

   val merge : int list *
     int list -> int list

    val sort :
      int list -> int list

357CS 538  Spring 2002
©

    val split : 'a list ->
     'a list * 'a list

  end

To sort a type other than integers, we
replace the definition of le  in the
structure.
But rather than actually edit that
definition, ML gives us a powerful
mechanism to parameterize a
structure. This is the functor, which
allows us to use one or more
structures as parameters in the
definition of a structure.



358CS 538  Spring 2002
©

Functors
The general form of a functor is
functor name
 (structName:signature) =
   structure definition;

This functor will create a specific
version of the structure definition
using the structure parameter passed
to it.
For our purposes this is ideal—we pass
in a structure defining an ordering
relation (the le  function). This then
creates a custom version of all the
functions defined in the structure
body, using the specific le  definition
provided.

359CS 538  Spring 2002
©

We first define
signature Order =

sig

  type elem

  val le : elem*elem -> bool

end;

This defines the type of a structure
that defines a le predicate defined on
a pair of types called elem .
An example of such a structure is
structure IntOrder:Order =

struct

  type elem = int;

  fun le(a,b) = a <= b;

end;

Now we just define a functor that
creates a Sorting structure based on
an Order  structure:

360CS 538  Spring 2002
©

functor MakeSorting(O:Order) =
struct

open O; (* makes le available*)
  fun split [] = ([],[])
   |  split [a] = ([a],[])
   |  split (a::b::rest) =
      let val (left,right) =
        split rest in
         (a::left,b::right)
      end;

  fun merge([],[]) = []
   |  merge([],hd::tl) = hd::tl
   |  merge(hd::tl,[]) = hd::tl
   |  merge(hd::tl,h::t) =
      if le(hd,h)
      then hd::merge(tl,h::t)
      else h::merge(hd::tl,t)

361CS 538  Spring 2002
©

  fun sort [] = []
   |  sort([a]) = [a]
   |  sort(a::b::rest) =
      let val (left,right) =
       split(a::b::rest) in
        merge(sort(left),

sort(right))
      end;

  fun inOrder [] = true
   |  inOrder [a] = true
   |  inOrder (a::b::rest) =
       le(a,b) andalso
         inOrder (b::rest);
end;



362CS 538  Spring 2002
©

Now
structure IntSorting =
 MakeSorting(IntOrder);

creates a custom structure for sorting
integers:
 IntSorting.sort [3,0,~22,8];

val it = [~22,0,3,8] : elem list

To sort strings, we just define a
structure containing an le  defined
for strings with Order  as its
signature (i.e., type) and pass it to
MakeSorting :
structure StrOrder:Order =

struct

  type elem = string

  fun le(a:string,b) = a <= b;

end;

363CS 538  Spring 2002
©

structure StrSorting =
  MakeSorting(StrOrder);

StrSorting.sort(
 ["cc","abc","xyz"]);
val it = ["abc","cc","xyz"] :
 StrOrder.elem list

StrSorting.inOrder(
 ["cc","abc","xyz"]);
val it = false : bool

StrSorting.inOrder(
 [3,0,~22,8]);
stdIn:593.1-593.32 Error:
operator and operand don’t agree
[literal]

operator domain: strOrder.elem
list
  operand:         int list
  in expression:

StrSorting.inOrder (3 :: 0 ::
~22 :: <exp> :: <exp>)

364CS 538  Spring 2002
©

The SML Basis Library
SML provides a wide variety of useful
types and functions, grouped into
structures, that are included in the
Basis Library.
A web page fully documenting the
Basis Library is linked from the ML
page that is part of the Programming
Languages Links page on the CS 538
home page.
Many useful types, operators and
functions are “preloaded” when you
start the SML compiler. These are
listed in the “Top-level Environment”
section of the Basis Library
documentation.
Many other useful definitions must
be explicitly fetched from the
structures they are defined in.

365CS 538  Spring 2002
©

For example, the Math  structure
contains a number of useful
mathematical values and operations.
You may simply enter
open Math;

while will load all the definitions in
Math . Doing this may load more
definitions than you want. What’s
worse, a definition loaded may
redefine a definition you currently
want to stay active. (Recall that ML
has virtually no overloading, so
functions with the same name in
different structures are common.)
A more selective way to access a
definition is to qualify it with the
structure’s name. Hence
Math.pi;
val it = 3.14159265359 : real



366CS 538  Spring 2002
©

gets the value of pi  defined in Math .
Should you tire of repeatedly
qualifying a name, you can (of
course) define a local value to hold its
value. Thus
val pi = Math.pi;

val pi = 3.14159265359 : real

works fine.

367CS 538  Spring 2002
©

An Overview of Structures in
the Basis Library

The Basis Library contains a wide
variety of useful structures. Here is an
overview of some of the most
important ones.
•  Option

Operations for the option  type.
•  Bool

Operations for the bool  type.
•  Char

Operations for the char  type.
•  String

Operations for the string  type.
•  Byte

Operations for the byte  type.
•  Int

Operations for the int  type.

368CS 538  Spring 2002
©

•  IntInf

Operations for an unbounded precision
integer type.

•  Real

Operations for the real  type.
•  Math

Various mathematical values and
operations.

•  List

Operations for the list  type.
•  ListPair

Operations on pairs of lists.
•  Vector

A polymorphic type for immutable
(unchangeable) sequences.

•  IntVector, RealVector,
BoolVector, CharVector

Monomorphic types for immutable
sequences.

369CS 538  Spring 2002
©

•  Array

A polymorphic type for mutable
(changeable) sequences.

•  IntArray, RealArray,
BoolArray, CharArray

Monomorphic types for mutable
sequences.

•  Array2

A polymorphic 2 dimensional mutable
type.

•  IntArray2, RealArray2,
BoolArray2, CharArray2

Monomorphic 2 dimensional mutable
types.

•  TextIO

Character-oriented text IO.
•  BinIO

Binary IO operations.
•  OS, Unix, Date, Time, Timer

Operating systems types and operations.



370CS 538  Spring 2002
©

ML Type Inference
One of the most novel aspects of ML is
the fact that it infers types for all user
declarations.
How does this type inference mechanism
work?
Essentially, the ML compiler creates an
unknown type for each declaration the
user makes. It then solves for these
unknowns using known types and a set
of type inference rules. That is, for a
user-defined identifier i , ML wants to
determine T(i) , the type of i .

371CS 538  Spring 2002
©

The type inference rules are:
1. The types of all predefined literals,

constants and functions are known in
advance. They may be looked-up and
used. For example,

2 : int

true : bool

[] : 'a list

:: : 'a * 'a list -> 'a list

2. All occurrences of the same symbol
(using scoping rules) have the same
type.

3. In the expression
I = J

  we know T(I)  = T(J) .

372CS 538  Spring 2002
©

4. In a conditional
(if E1 then E2 else E3)

 we know that
T(E1)  = bool ,
T(E2)  = T(E3)  = T(conditional)

5. In a function call
(f x)

  we know that if T(f)  = 'a -> 'b
  then T(x)  = 'a  and T(f x)  = 'b

6. In a function definition
fun f x = expr;

  if t(x)  = 'a  and T(expr)  = 'b
  then T(f)  = 'a -> 'b

7. In a tuple (e 1,e 2, ..., e n)

if we know that T(e i ) = 'a i 1 ≤ i ≤ n

  then T(e 1,e 2, ..., e n) =
      'a 1*'a 2*...*'a n

373CS 538  Spring 2002
©

8. In a record
 { a=e 1,b=e 2, ... }

   if T(e i )  = 'a i 1 ≤ i ≤ n  then
      the type of the record =

{a:'a 1, b:'a 2, ...}

9. In a list [v 1,v 2, ... v n]

if we know that T(v i ) = 'a i 1 ≤ i ≤ n

  then we know that
'a 1='a 2=...='a n and
T([v 1,v 2, ... v n])  = 'a 1 list



374CS 538  Spring 2002
©

To Solve for Types:
1. Assign each untyped symbol its own

distinct type variable.
2. Use rules (1) to (9) to solve for and

simplify unknown types.
3. Verify that each solution “works”

(causes no type errors) throughout the
program.

Examples
Consider
fun fact(n)=

if n=1 then 1 else n*fact(n-1);

To begin, we’ll assign type variables:
T(fact)  = 'a -> 'b
(fact  is a function)
T(n) = 'c

375CS 538  Spring 2002
©

Now we begin to solve for the types
'a , 'b  and 'c  must represent.
We know (rule 5) that 'c  = 'a  since
n is the argument of fact .
We know (rule 3) that 'c  = T(1)  =
int since n=1  is part of the definition.
We know (rule 4) that T(1)  = T(if
expression) ='b  since the if
expression is the body of fact .
Thus, we have
‘a = 'b  ='c  = int , so
T(fact)  = int -> int

T(n)  = int

These types are correct for all
occurrences of fact  and n in the
definition.

376CS 538  Spring 2002
©

A Polymorphic Function:
fun leng(L) =

 if L = []

 then 0

 else 1+len(tl L);

To begin, we know that
T([])  = 'a list  and
T(tl)  = 'b list -> 'b list

We assign types to leng  and L:
T(leng)  = 'c -> 'd

T(L)  = 'e

Since L is the argument of leng ,
'e  = 'c

From the expression L=[] we know
'e  = 'a list

377CS 538  Spring 2002
©

From the fact that 0 is the result of
the then, we know the if returns an
int , so 'd  = int .
Thus T(leng)  = 'a list -> int  and
T(L)  = 'a list

These solutions are type correct
throughout the definition.



378CS 538  Spring 2002
©

Type Inference for Patterns
Type inference works for patterns too.
Consider
fun leng [] = 0

 |  leng (a::b) = 1 + leng b;

We first create type variables:
T(leng) = 'a -> 'b

T(a) = 'c

T(b) = 'd

From leng []  we conclude that
'a = 'e list

From leng [] = 0  we conclude that
'b  = int

From leng (a::b)  we conclude that
'c ='e  and 'd  = 'e list

Thus we have
T(leng) = 'e list -> int

379CS 538  Spring 2002
©

T(a) = 'e

T(b) = 'e list

This solution is type correct
throughout the definition.

380CS 538  Spring 2002
©

Not Everything can be
Automatically Typed in ML

Let’s try to type
fun f x = (x x);

We assume
T(f) = 'a -> 'b

t(x) = 'c

Now (as usual) 'a = 'c since x is the
argument of f .
From the call (x x) we conclude that
'c  must be of the form 'd -> 'e
(since x is being used as a function).
Moreover, 'c = 'd  since x is an
argument in (x x) .
Thus 'c = 'd ->'e = 'c ->'e .
But 'c = 'c->'e has no solution, so
in ML this definition is invalid. We

381CS 538  Spring 2002
©

can’t pass a function to itself as an
argument—the type system doesn’t
allow it.
In Scheme this is allowed:
(define (f x) (x x))

but a call like
(f f)

certainly doesn’t do anything good!



382CS 538  Spring 2002
©

Type Unions
Let’s try to type
fun f g = ((g 3), (g true));

Now the type of g is 'a -> 'b since g
is used as a function.
The call (g 3) says 'a = int and the
call (g true)  says 'a  = boolean .
Does this mean g is polymorphic?
That is, is the type of f

f : ('a->'b)->'b*'b ?
NO!
All functions have the type 'a -> 'b
but not all functions can be passed to
f .
Consider not: bool->bool .
The call (not 3)  is certainly illegal.

383CS 538  Spring 2002
©

What we’d like in this case is a union
type. That is, we’d like to be able to
type g as (int|bool)->'b which ML
doesn’t allow.
Fortunately, ML does allow type
constructors, which are just what we
need.
Given
datatype  T =
  I of int|B of bool;

we can redefine f  as
fun f g =
 (g (I(3)), g (B(true)));
val f = fn : (T -> 'a) -> 'a * 'a

384CS 538  Spring 2002
©

Finally, note that in a definition like
let
  val  f =

fn x => x (* id function*)
in (f 3,f true)
end;

type inference works fine:
val it = (3,true) : int * bool

Here we define f  in advance, so its
type is known when calls to it are
seen.


