Reading Assignment

. Sethi: Chapter 11
. Scott: Section 11.3

CS 538 Spring 200%° 385

Prolog

Prolog presents a view of
programming that is very different
from most other programming
languages.

A famous text book is entitled

“Algorithms + Data Structures =
Programs”™

This formula represents well the
conventional approach to
programming that most programming
anguages support.

n Prolog there Is an alternative rule
of programming:

“Algorithms = Logic + Control”

This rule encompasses a non-
procedural view of programming.

CS 538 Spring 200%°

386

Logic (what the program is to
compute) comes first.

Then control (how to implement the
0gic) Is considered.

n Prolog we program the logic of a
program, but the Prolog system
automatically implements the control.

Logic Is essential—control is just
efficiency.

CS 538 Spring 2002 ag7

Logic Programming

Prolog implements logic programming.

In fact Prolog means Programming
in LOgic.

In Prolog programs are statements of
rules and facts.

Program execution Is deduction—can
an answer be inferred from known
rules and facts.

Prolog was developed in 1972 by
Kowalski and Colmerauer at the
University of Marsellles.

CS 538 Spring 200%°

388

Elementary Data Objects

. In Prolog integers and atoms are the
elementary data objects.

. Integers are ordinary integer literals and
values.

. Atoms are identifiers that begin with a
lower-case letter (much like symbolic
values in Scheme).

. In Prolog data objects are called terms.

. In Prolog we define relations among
terms (integers, atoms or other terms).

. A predicate names a relation.

Predicates begin with lower-case letters.

. To define a predicate, we write clauses
that define the relation.

CS 538 Spring 200%°

389

. There are two kinds of program clauses,
facts and rules.

. A fact Is a predicate that prefixes a
sequence of terms, and which ends with
a period (“7).

As an example, consider the following

facts which define “fatherOf ” and

“motherOf ” relations.
fatherOf(tom,dick).
fatherOf(dick,harry).
fatherOf(jane,harry).
motherOf(tom,judy).
motherOf(dick,mary).
motherOf(jane,mary).

The symbols fatherOf and motherOf
are predicates. The symbols tom,
dick , harry , judy , mary and jane
are atoms.

CS 538 Spring 200%° 390

Once we have entered rules and facts
that define relations, we can make
queries (ask the Prolog system
questions).

Prolog has two interactive modes that
you can switch between.

To enter definition mode (to define
rules and facts) you enter

[user].

You then enter facts and rules,
terminating this phase with ~D (end
of file).

Alternatively, you can enter
['filename’].

to read in rules and facts stored In
the file named filename

CS 538 Spring 200%° 301

When you start Prolog, or after you
leave definitions mode, you are In
query mode.

In query mode you see a prompt of
the form

| ?- or ?- (depending on the system
you are running).

In query mode, Prolog allows you to
ask whether a relation among terms is
true or false.

Thus given our definition of
motherOf and fatherOf relations,
we can ask:

| ?- fatherOf(tom,dick).

yes

A “yes” response means that Prolog Is
able to conclude from the facts and
rules it has been given that the
relation queried does hold.

CS 538 Spring 200%° 392

| ?- fatherOf(georgeW,george).
no

A “no” response to a query means
that Prolog is unable to conclude that
the relation holds from what it has
been told. The relation may actually
be true, but Prolog may lack necessary
facts or rules to deduce this.

CS 538 Spring 200%° 303

Variables In Queries

One of the attractive features of
Prolog Is the fact that variables may
be included In queries. A variable
always begins with a capital letter.

When a variable is seen, Prolog tries
to find a value (binding) for the
variable that will make the queried
relation true.

For example,
fatherOf(X,harry).

asks Prolog to find an value for X
such that X’s father Is harry .

When we enter the query, Prolog
gives us a solution (if one can be
found):

?- fatherOf(X,harry).

X = dick

CS 538 Spring 200%°

394

If no solution can be found, it tells us
SO:

| ?- fatherOf(Y,jane).

no

Since solutions to queries need not be
unique, Prolog will give us alternate
solutions If we ask for them. We do
SO by entering a “;” after a solution Is
printed. We get a “no” when no more
solutions can be found:

| ?- fatherOf(X,harry).
X=dick

X =jane

no

CS 538 Spring 200%° 395

Variables may be placed anywhere In
a query. Thus we may ask

| ?- fatherOf(jane,X).

X=harry

Nno

We may use more than one variable if
we wish:

| ?- fatherOf(X,Y).

X =tom,

Y =dick ;

X = dick,

Y =harry

X = jane,

Y =harry

Nno

(This query displays all the fatherOf
relations).

CS 538 Spring 200%° 396

Conjunction of Goals

More than one relation can be
Included as the “goal” of a query. A
comma (“,”) Is used as an AND
operator to indicate a conjunction of
goals—all must be satisfied by a
solution to the query.

?-
1lat.her0f(jane,X),motherOf(jane,Y).
X = harry,
Y = mary
Nno
A given variable may appear more
than once in a query. The same value
of the variable must be used in all
places in which the variable appears
(this is called unification).

CS 538 Spring 200%°

397

For example,
| -
fatherOf(tom, X),fatherOf(X,harry).

X =dick ;
no

CS 538 Spring 200%° 308

Rules in Prolog

Rules allow us to state that a relation
will hold depending on the truth
(correctness) of other relations.

In effect a rules says,

“If | know that certain relations hold,
then | also know that this relation
holds.”

A rule in Prolog is of the form
rel 1 :-rel 5, rel 4, ... rel n-

This says rel ; can be assumed true If
we can establish that rel , and rel 4
and all relations to rel , are true.

rel , IS called the head of the rule.

rel , to rel , form the body of the
rule.

CS 538 Spring 200%°

399

Example

The following two rules define a
grandMotherOf relation using the

motherOf and fatherOf relations:

grandMotherOf(X,GM) :-

motherOf(X,M),
motherOf(M,GM).

grandMotherOf(X,GM) :-

fatherOf(X,F),
motherOf(F,GM).

| ?- grandMotherOf(tom,GM).
GM =mary ;
no

| ?- grandMotherOf(dick,GM).
no

| ?- grandMotherOf(X,mary).
X=tom ;
no

CS 538 Spring 200%°

400

As Is the case for all programming, in
all languages, you must be careful
when you define a rule that it
correctly captures the idea you have
In mind.

Consider the following rule that
defines a sibling relation between
two people:

sibling(X,Y) :-

motherOf(X,M), motherOf(Y,M),
fatherOf(X,F), fatherOf(Y,F).

This rule says that X and Y are siblings
If each has the same mother and the
same father.

But the rule Is wrong!
Why?

CS 538 Spring 200%° 201

Let’s give It a try:

| 2- sibling(X,Y).

X=Y =tom

Darn! That’s right, you can’t be your
own sibling. So we refine the rule to
force X and Y to be distinct:
sibling(X,Y) :-

motherOf(X,M), motherOf(Y,M),
fatherOf(X,F), fatherOf(Y,F),

\+(X=Y).

In Quintus prolog “\+ ” represents
not; most other Prologs include a not
relation.

| ?- sibling(X,Y).
X = dick,

Y =jane ;

X = jane,

Y =dick ;

no

CS 538 Spring 200%° 402

Note that distinct but equivalent
solutions

(like X = dick,Y = jane VS.

X = jane,Y = dick) often appear In
Prolog solutions. You may sometimes
need to “filter out” solutions that are
effectively redundant (perhaps by
formulating stricter or more precise
rules).

CS 538 Spring 200%° 403

How Prolog Solves Queries

The unique feature of Prolog is that it
automatically chooses the facts and
rules needed to solve a query.

But how does It make I1ts choice?

It starts by trying to solve each goal
In a query, left to right (recall goals
are connected using “,” which is the
and operator).

For each goal it tries to match a
corresponding fact or the head of a
corresponding rule.

CS 538 Spring 200%° 404

A fact or head of rule matches a goal
If:
. Both use the same predicate.

. Both have the same number of terms
following the predicate.

. Each term in the goal and fact or rule
head match (are equal), possibly
binding a free variable to force a
match.

For example, assume we wish to
match the following goal:
X(a,B)

This can match the fact

X(a,b).

or the head of the rule

X(Y,Z) :-Y =Z.

CS 538 Spring 200%° 405

But x(a,B) can’t match

y(a,b) (wrong predicate name) or
x(b,d) (first terms don’t match) or
x(a,b,c) (wrong number of terms).

If we succeed In matching a rule, we
have solved the goal In question; we
can go on to match any remaining
goals.

If we match the head of a rule, we
aren’t done—we add the body of the
rule to the list of goals that must be
solved.

Thus If we match the goal x(a,B)

with the rule

x(Y,2) :-Y = Z.

then we must solve a=B which is done
by making B equal to a.

CS 538 Spring 200%° 406

