
407CS 538 Spring 2002
©

Backtracking
If we reach a point where a goal can’t
be matched, or the body of a rule
can’t be matched, we backtrack to the
last (most recent) spot where a choice
of matching a particular fact or rule
was made. We then try to match a
different fact or rule. If this can’t be
done, we go back to the next previous
place where a choice was made and
try a different match there. We try
alternatives until we are able to solve
all the goals in our query or until all
possible choices have been tried and
found to fail. If this happens, we
answer “no” the query can’t be
solved.
As we try to match facts and rules we
try them in their order of definition.

408CS 538 Spring 2002
©

Example
Let’s trace how
| ?- grandMotherOf(tom,GM).

is solved.
Recall that
grandMotherOf(X,GM) :-

 motherOf(X,M),
 motherOf(M,GM).

grandMotherOf(X,GM) :-

 fatherOf(X,F),
 motherOf(F,GM).

fatherOf(tom,dick).

fatherOf(dick,harry).

fatherOf(jane,harry).

motherOf(tom,judy).

motherOf(dick,mary).

motherOf(jane,mary).

409CS 538 Spring 2002
©

We try the first grandMotherOf rule
first.
This forces X = tom . We have to solve
 motherOf(tom,M),
 motherOf(M,GM).

We now try to solve
motherOf(tom,M)

This forces M = judy .
We then try to solve
motherOf(judy,GM)

None of the motherOf rules match
this goal, so we backtrack. No other
motherOf rule can solve
motherOf(tom,M)

so we backtrack again and try the
second grandMotherOf rule:

410CS 538 Spring 2002
©

grandMotherOf(X,GM) :-
 fatherOf(X,F),
 motherOf(F,GM).

This matches, forcing X = tom .
We have to solve
fatherOf(tom,F), motherOf(F,GM).

We can match the first goal with
fatherOf(tom,dick).

This forces F = dick .
We then must solve
motherOf(dick,GM)

which can be matched by
motherOf(dick,mary).

We have matched all our goals, so we
know the query is true, with
GM = mary .

411CS 538 Spring 2002
©

List Processing in Prolog
Prolog has a notation similar to “cons
cells” of Lisp and Scheme.
The “.” functor (predicate name) acts
like cons.
Hence .(a,b) in Prolog is essentially
the same as (a . b) in Scheme.
Lists in Prolog are formed much the
same way as in Scheme and ML:
[] is the empty list
[1,2,3] is an abbreviation for
.(1, .(2, .(3,[])))

just as
(1,2,3) in Scheme is an abbreviation
for
(cons 1 (cons 2 (cons 3 ())))

412CS 538 Spring 2002
©

The notation [H|T] represents a list
with H matching the head of the list
and T matching the rest of the list.
Thus [1,2,3] ≡ [1| [2,3]] ≡
[1,2| [3]] ≡ [1,2,3| []]

As in ML, “_” (underscore) can be
used as a wildcard or “don’t care”
symbol in matches.
Given the fact
 p([1,2,3,4]).

The query
 | ?- p([X|Y]).

answers
X = 1,

Y = [2,3,4]

413CS 538 Spring 2002
©

The query
p([_,_,X|Y]).

answers
X = 3,

Y = [4]

414CS 538 Spring 2002
©

List Operations in Prolog
List operations are defined using rules
and facts. The definitions are similar
to those used in Scheme or ML, but
they are non-procedural.
That is you don’t given an execution
order. Instead, you give recursive rules
and non-recursive “base cases” that
characterize the operation you are
defining.
Consider append :
 append([],L,L).

 append([H|T1],L2,[H,T3]) :-
 append(T1,L2,T3).

The first fact says that an empty list
(argument 1) appended to any list L
(argument 2) gives L (argument 3) as
its answer.

415CS 538 Spring 2002
©

The rule in line 2 says that if you take
a list that begins with H and has T1 as
the rest of the list and append it to a
list L then the resulting appended list
will begin with H.
Moreover, the rest of the resulting
list, T3, is the result of appending T1
(the rest of the first list) with L2 (the
second input list).
The query
 | ?- append([1],[2,3],[1,2,3]).

answers
Yes

because with H=1, T1=[] , L2 =[2,3]
and T3=[2,3] it must be the case
that append([],[2,3],[2,3]) is
true and fact (1) says that this is so.

416CS 538 Spring 2002
©

Inverting Inputs and Outputs
In Prolog the division between
“inputs” and “outputs” is
intentionally vague. We can exploit
this. It is often possible to “invert” a
query and ask what inputs would
compute a given output. Few other
languages allow this level of
flexibility.
 Consider the query
append([1],X,[1,2,3]).

This asks Prolog to find a list X such
that if we append [1] to X we will
get [1,2,3] .
 Prolog answers

X = [2,3]

417CS 538 Spring 2002
©

How does it choose this answer?
First Prolog tries to match the query
against fact (1) or rule (2).
Fact (1) doesn’t match (the first
arguments differ) so we match rule
(2).
This gives us H=1, T1=[] , L2=X and
T3 = [2,3] .
We next have to solve the body of
rule (2) which is

append([],L2,[2,3]).

Fact (1) matches this, and tells us
that L2=[2,3]=X , and that’s our
answer!

418CS 538 Spring 2002
©

The Member Relation
A common predicate when
manipulating lists is a membership
test—is a given value a member of a
list?
An “obvious” definition is a recursive
one similar to what we might
program in Scheme or ML:
member(X,[X|_]).
member(X,[_|Y]):- member(X,Y).

This definition states that the first
argument, X, is a member of the
second argument (a list) if X matches
the head of the list or if X is
(recursively) a member of the rest of
the list.

419CS 538 Spring 2002
©

Note that we don’t have to “tell”
Prolog that X can’t be a member of an
empty list—if we don’t tell Prolog
that something is true, it
automatically assumes that it must be
false.
Thus saying nothing about
membership in an empty list is the
same as saying that membership in an
empty list is impossible.
Since inputs and outputs in a relation
are blurred, we can use member in an
unexpected way—to iterate through a
list of values.

420CS 538 Spring 2002
©

If we want to know if any member of
a list L satisfies a predicate p, we can
simply write:
member(X,L),p(X).

There is no explicit iteration or
searching. We simply ask Prolog to
find an X such that member(X,L) is
true (X is in L) and p(X) is true.
Backtracking will find the “right”
value for X (if any such X exists).
This is sometimes called the “guess
and verify” technique.
Thus we can query
member(X,[3,-3,0,10,-10]),
 (X > 0).

This asks for an X in the list
[3,-3,0,10,-10] which is greater
than 0.
Prolog answers

421CS 538 Spring 2002
©

X = 3 ;
X = 10 ;

Note too that our “obvious”
definition of member is not the only
one possible.
An alternative definition (which is far
less obvious) is
member(X,L) :-
 append(_,[X|_],L).

This definition says X is a member of
L if I can take some list (whose value
I don’t care about) and append it to a
list that begins with X (and which
ends with values I don’t care about)
and get a list equal to L.
Said more clearly, X is a member of L
if X is anywhere in the “middle” of L.

422CS 538 Spring 2002
©

Prolog solves a query involving
member by partitioning the list L in
all possible ways, and checking to see
if X ever is the head of the second
list. Thus for member(X,[1,2,3]) , it
tries the partition [] and [1,2,3]
(exposing 1 as a possible X), then [1]
and [2,3] (exposing 2) and finally
[1,2] and [3] (exposing 3).

423CS 538 Spring 2002
©

Sorting Algorithms
Sorting algorithms are good examples
of Prolog’s definitional capabilities. In
a Prolog definition the “logic” of a
sorting algorithm is apparent,
stripped of the cumbersome details of
data structures and control structures
that dominate algorithms in other
programming languages.
Consider the simplest possible sort
imaginable, which we’ll call the
“naive sort.”
At the simplest level a sorting of a list
L requires just two things:
• The sorting is a permutation (a

reordering) of the values in L.

• The values are “in order” (ascending
or descending).

424CS 538 Spring 2002
©

We can implement this concept of a
sort directly in Prolog. We
(a) permute an input list
(b) check if it is in sorted order
(c) repeat (a) & (b) until a sorting is
 found.

425CS 538 Spring 2002
©

Permutations
Let’s first look at how permutations
are defined in Prolog. In most
languages generating permutations is
non-trivial—you need data structures
to store the permutations you are
generating and control structures to
visit all permutations in some order.
In Prolog, permutations are defined
quite concisely, though with a bit of
subtlety:
perm(X,Y) will be true if list Y is a
permutation of list X.
Only two definitions are needed:
perm([],[]).

perm(L,[H|T]) :-
 append(V,[H|U],L),
 append(V,U,W), perm(W,T).

426CS 538 Spring 2002
©

The first definition,
perm([],[]).

is trivial. An empty list may only be
permuted into another empty list.
The second definition is rather more
complex:
perm(L,[H|T]) :-
append(V,[H|U],L),
 append(V,U,W), perm(W,T).

This rule says a list L may be
permuted in to a list that begins with
H and ends with list T if:
(1) L may be partitioned into two
 lists, V and [H|U] . (That is, H is
 somewhere in the “middle” of L).
(2) Lists V and U (all of L except H)
 may be appended into list W.
(3) List W may be permuted into T.

427CS 538 Spring 2002
©

Let’s see perm in action:
| ?- perm([1,2,3],X).

X = [1,2,3] ;

X = [1,3,2] ;

X = [2,1,3] ;

X = [2,3,1] ;

X = [3,1,2] ;

X = [3,2,1] ;
no

We’ll trace how the first few answers
are computed. Note though that all
permutations are generated, and with
no apparent data structures or
control structures.
We start with L=[1,2,3] and
X=[H|T] .
We first solve append(V,[H|U],L) ,
which simplifies to
append(V,[H|U],[1,2,3]) .

428CS 538 Spring 2002
©

One solution to this goal is
V = [], H = 1, U = [2,3]

We next solve append(V,U,W) which
simplifies to append([],[2,3],W) .
The only solution for this is W=[2,3] .
Finally, we solve perm(W,T) , which
simplifies to perm([2,3],T) .
One solution to this is T=[2,3] .
This gives us our first solution:
[H|T]=[1,2,3] .
To get our next solution we backtrack.
Where is the most recent place we
made a choice of how to solve a goal?
It was at perm([2,3],T) . We chose
T=[2,3] , but T=[3,2] is another
solution. Using this solution, we get
out next answer [H|T]=[1,3,2] .

429CS 538 Spring 2002
©

Let’s try one more. We backtrack
again. No more solutions are possible
for perm([2,3],T) , so we backtrack
to an earlier choice point.
At append(V,[H|U],[1,2,3])
another solution is
V=[1], H = 2, U = [3]

Using this binding, we solve
append(V,U,W) which simplifies to
append([1],[3],W) . The solution to
this must be W=[1,3] .
We then solve perm(W,T) which
simplifies to perm([1,3],T) . One
solution to this is T=[1,3] . This
makes our third solution for [H|T] =
[2,1,3] .
You can check out the other bindings
that lead to the last three solutions.

430CS 538 Spring 2002
©

A Permutation Sort
Now that we know how to generate
permutations, the definition of a
permutation sort is almost trivial.
We define an inOrder relation that
characterizes our notion of when a
list is properly sorted:
inOrder([]).

inOrder([_]).

inOrder([A,B|T]) :-
 A =< B, inOrder([B|T]).

These definitions state that a null list,
and a list with only one element are
always in sorted order. Longer lists
are in order if the first two elements
are in proper order. (A=<B) checks
this and then the rest of the list,
excluding the first element, is
checked.

431CS 538 Spring 2002
©

Now our naive permutation sort is
only one line long:
naiveSort(L1,L2) :-
 perm(L1,L2), inOrder(L2).

And the definition works too!
| ?-
naiveSort([1,2,3],[3,2,1]).
no

?- naiveSort([3,2,1],L).

L = [1,2,3] ;
no

| ?-
naiveSort([7,3,88,2,1,6,77,
 -23,5],L).

L = [-23,1,2,3,5,6,7,77,88]

432CS 538 Spring 2002
©

Though this sort works, it is
hopelessly inefficient—it repeatedly
“shuffles” the input until it happens
to find an ordering that is sorted. The
process is largely undirected. We
don’t “aim” toward a correct ordering,
but just search until we get lucky.

