The problem is that Clark Kent is from
the planet Krypton, and hence won’t
appear In our motherOf database.

Let’s trace the query.
It doesn’t match isMortal(eve)

We next try

IsMortal(clarkKent) :-

IsMortal(Y),

motherOf(clarkKent,Y).
We try Y=eve, but eve isn’t Clark’s
mother. So we recurse, getting:
IsMortal(Z), motherOf(Y,2),
motherOf(clarkKent,Y).
But eve isn’t Clark’s grandmother
either! So we keep going further back,
trying to find a chain of descendents
that leads from eve to clarkkent .
No such chain exists, and there is no

CS 538 Spring 200%° 455

limit to how long a chain Prolog will
try.

There is a solution though!

We simply rewrite our recursive

definition to be

IsMortal(X) :-
motherOf(X,Y),isMortal(Y).

This is logically the same, but now we

work from the individual X back

toward eve, rather than from eve

toward X. Since we have no

motherOf relation involving

clarkkent , we Immediately stop our

search and answer no!

CS 538 Spring 200%° 456

Extra-logical Aspects of
Prolog

To make a Prolog program more
efficient, or to represent negative
Information, Prolog needs features
that have a procedural flavor. These
constructs are called “extra-logical”
because they go beyond Prolog’s core
of logic-based inference.

CS 538 Spring 2002 457

The Cut

The most commonly used extra-
logical feature of Prolog Is the “cut
SymbOI’” H!H

A'! In a goal, fact or rule “cuts off”
backtracking.

In particular, once a ! Is reached (and
automatically matched), we may not
backtrack across it. The rule we've
selected and the bindings we’ve
already selected are “locked In” or
“frozen.”

For example, given
X(A) - y(A,B), z(B) , 1, v(B,C).
once the ! Is hit we can’t backtrack

to resatisfy y(A,B) or z(B) In some
other way. We are locked into this

CS 538 Spring 200%°

458

rule, with the bindings of A and B
already In place.

We can backtrack to try various
solutions to v(B,C) .

It IS sometimes useful to have several
1’s 1n a rule. This allows us to find a
partial solution, lock it in, find a
further solution, then lock it In, etc.

For example, In a rule

a(X) - b(X), I, c(X,Y), !, d(Y).

we first try to satisfy b(X) , perhaps
trying several facts or rules that
define the b relation. Once we have a
solution to b(X) , we lock it in, along
with the binding for X.

Then we try to satisfy c(X,Y) , using
the fixed binding for X, but perhaps
trying several bindings for Y until
c(X,Y) Is satisfied.

CS 538 Spring 200%° 459

We then lock In this match using
another ! .

Finally we check if d(Y) can be
satisfied with the binding of Y already
selected and locked in.

CS 538 Spring 200%° 460

When are Cuts Needed?

A cut can be useful in improving
efficiency, by forcing Prolog to avoid
useless or redundant searches.

Consider a query like

member(X,listl),

member(X,list2), isPrime(X).
This asks Prolog to find an X that is In
list1 and also inlist2 and also Is
prime.

X will be bound, In sequence, to each
value In list1 . We then check If X Is
also in list2 ., and then check If X iIs
prime.

Assume we find X=8 Is In list1 and
list2 . isPrime(8) fails (of course).
We backtrack to member(X,list2)

and try to resatisfy it with the same

value of X

CS 538 Spring 200%°

461

But clearly there Is never any point in
trying to resatisfy member(X,list2)
Once we know a value of X is In

list2 , we test It using isPrime(X)

If It fails, we want to go right back to
member(X,list1) and get a
different X.

To create a version of member that
never backtracks once 1t has been
satisfied we can use ! .

We define
memberl(X,[X|_]) :- ..

memberl(X,[|Y]) :-
memberl(X,Y).

Our query Is now

member(X,listl),
memberl(X,list2), isPrime(X).

(Why isn’'t memberl used in both
terms?)

CS 538 Spring 200%° 462

Expressing Negative
Information

Sometimes it i1s useful to state rules
about what can’t be true. This allows
us to avoid long and fruitless
searches.

fail 1S a goal that always fails. It can
be used to represent goals or results
that can never be true.

Assume we want to optimize our
grandMotherOf rules by stating that
a male can never be anyone’s
grandmother (and hence a complete
search of all motherOf and

fatherOf relations Is useless).

A rule to do this Is

grandMotherOf(X,GM) :-
male(GM), falil.

CS 538 Spring 200%°

463

This rule doesn’t do quite what we
hope 1t will!

Why?

The standard approach in Prolog is to
try other rules if the current rule fails.

Hence we need some way to “cut off”
any further backtracking once this
negative rule is found to be
applicable.

This can be done using

grandMotherOf(X,GM) :-
male(GM),!, falil.

CS 538 Spring 200%° 464

Other Extra-Logical
Operators

. assert and retract

These operators allow a Prolog
program to add new rules during
execution and (perhaps) later remove
them. This allows programs to learn
as they execute.

. findall

Called as findall(X,goal,List)

where X Is a variable in goal . All
possible solutions for X that satisfy
goal are found and placed in List .

For example,

findall(X,
(E)ppend(_;[xl_-l;['1,2,'3,4]),(X<O)),

L =[-1,-3]

CS 538 Spring 200%°

465

. var and nonvar

var(X) tests whether X iIs unbound
(free).

nonvar(Y) tests whether Y is bound
(no longer free).

These two operators are useful in
tailoring rules to particular
combinations of bound and unbound
variables.

For example, the rule

grandMotherOf(X,GM) :-

male(GM),!, fall.
might backfire if GMis not yet bound.
We could set GMto a person for
whom male(GM) Is true, then fall
because we don’t want grandmothers
who are male!

CS 538 Spring 200%° 466

To remedy this problem. we use the

rule only when GMis bound. Our rule
becomes

grandMotherOf(X,GM) :-
nonvar(GM), male(GM),!, fail.

CS 538 Spring 2002 467

An Example of Extra-Logical
Programming

Factorial Is a very common example
program. It’s well known, and easy to
code In most languages.

In Prolog the “obvious” solution Is:
fact(N,1) ;- N =< 1.

fact(N,F) :-N>1, Mis N-1,
fact(M,G), F is N*G.

This definition is certainly correct. It
mimics the usual recursive solution.

But,

In Prolog “inputs” and “outputs” are
less distinct than in most languages.

In fact, we can envision 4 different
combinations of inputs and outputs,
based on what Is fixed (and thus an

CS 538 Spring 200%°

468

Input) and what is free (and hence is
to be computed):

1. Nand F are both ground (fixed). We
simply must decide If F=N!

2. Nis ground and F is free. This Is
how fact Is usually used. We must
compute an F such that F=N!

3. F Is fixed and N is free. This Is an
uncommon usage. We must find an
N such that F=N!, or determine that
no such N is possible.

4. Both Nand F are free. We generate,
In sequence, pairs of Nand F values
such that F=N!

CS 538 Spring 200%° 469

Our solution works for combinations
1 and 2 (where N is fixed), but not
combinations 3 and 4. (The problem
ISthat N=<1 and N>1 can't be
satisfied when N is free).

We'll need to use nonvar and ! to
form a solution that works for all 4
combinations of inputs.

We first handle the case where N Is

ground:

fact(1,1).

fact(N,1) :- nonvar(N), N =<1,!.
fact(N,F) :- nonvar(N) N >1, 1

M is N-1, fact(M,G), F is N*G, !.
The first rule handles the base case of
N=1.

The second rule handles the case of
N<1.

CS 538 Spring 2002 470

The third rule handles the case of

N >1 . The value of F Is computed
recursively. The first ! In each of
these rules forces that rule to be the
only one used for the values of N that
match. Moreover, the second ! In the
third rule states that after F Is
computed, further backtracking is
useless; there is only one F value for
any given N value.

To handle the case where F Is bound
and N is free, we use

fact(N,F) :- nonvar(F), !,

fact(M,G), N is M+1, F2 is N*G,

F=<F2, | F=F2.

In this rule we generate N, F2 pairs
until F2 >= F . Then we check If
F=F2. If this Is so, we have the N we
want. Otherwise, no such N can exist

and we fail (and answer no).

CS 538 Spring 2002 a1

For the case where both Nand F are

free we use:
fact(N,F) :- fact(M,G), N is M+1,
Fis N*G.

This systematically generates N, F
pairs, starting with N=2, F=2 and then
recursively building successor values
(N=3, F=6, then N=4, F=24, etc.)

CS 538 Spring 2002 7o

