
455CS 538 Spring 2002
©

The problem is that Clark Kent is from
the planet Krypton, and hence won’t
appear in our motherOf database.
Let’s trace the query.
It doesn’t match isMortal(eve) .
We next try
isMortal(clarkKent) :-
 isMortal(Y),
 motherOf(clarkKent,Y).

We try Y=eve , but eve isn’t Clark’s
mother. So we recurse, getting:
isMortal(Z), motherOf(Y,Z),
motherOf(clarkKent,Y).

But eve isn’t Clark’s grandmother
either! So we keep going further back,
trying to find a chain of descendents
that leads from eve to clarkKent .
No such chain exists, and there is no

456CS 538 Spring 2002
©

limit to how long a chain Prolog will
try.
There is a solution though!
We simply rewrite our recursive
definition to be
 isMortal(X) :-
 motherOf(X,Y),isMortal(Y).

This is logically the same, but now we
work from the individual X back
toward eve , rather than from eve
toward X. Since we have no
motherOf relation involving
clarkKent , we immediately stop our
search and answer no!

457CS 538 Spring 2002
©

Extra-logical Aspects of
Prolog

To make a Prolog program more
efficient, or to represent negative
information, Prolog needs features
that have a procedural flavor. These
constructs are called “extra-logical”
because they go beyond Prolog’s core
of logic-based inference.

458CS 538 Spring 2002
©

The Cut
The most commonly used extra-
logical feature of Prolog is the “cut
symbol,” “!”
A ! in a goal, fact or rule “cuts off”
backtracking.
In particular, once a ! is reached (and
automatically matched), we may not
backtrack across it. The rule we’ve
selected and the bindings we’ve
already selected are “locked in” or
“frozen.”
For example, given
x(A) :- y(A,B), z(B) , ! , v(B,C).

once the ! is hit we can’t backtrack
to resatisfy y(A,B) or z(B) in some
other way. We are locked into this

459CS 538 Spring 2002
©

rule, with the bindings of A and B
already in place.
We can backtrack to try various
solutions to v(B,C) .
It is sometimes useful to have several
! ’s in a rule. This allows us to find a
partial solution, lock it in, find a
further solution, then lock it in, etc.
For example, in a rule
a(X) - b(X), !, c(X,Y), ! , d(Y).

we first try to satisfy b(X) , perhaps
trying several facts or rules that
define the b relation. Once we have a
solution to b(X) , we lock it in, along
with the binding for X.
Then we try to satisfy c(X,Y) , using
the fixed binding for X, but perhaps
trying several bindings for Y until
c(X,Y) is satisfied.

460CS 538 Spring 2002
©

We then lock in this match using
another ! .
Finally we check if d(Y) can be
satisfied with the binding of Y already
selected and locked in.

461CS 538 Spring 2002
©

When are Cuts Needed?
A cut can be useful in improving
efficiency, by forcing Prolog to avoid
useless or redundant searches.
Consider a query like
member(X,list1),

member(X,list2), isPrime(X).

This asks Prolog to find an X that is in
list1 and also in list2 and also is
prime.
X will be bound, in sequence, to each
value in list1 . We then check if X is
also in list2 , and then check if X is
prime.
Assume we find X=8 is in list1 and
list2 . isPrime(8) fails (of course).
We backtrack to member(X,list2)
and try to resatisfy it with the same
value of X.

462CS 538 Spring 2002
©

But clearly there is never any point in
trying to resatisfy member(X,list2) .
Once we know a value of X is in
list2 , we test it using isPrime(X) .
If it fails, we want to go right back to
member(X,list1) and get a
different X.
To create a version of member that
never backtracks once it has been
satisfied we can use ! .
We define
member1(X,[X|_]) :- !.
member1(X,[_|Y]) :-
 member1(X,Y).

Our query is now
member(X,list1),
 member1(X,list2), isPrime(X).

(Why isn’t member1 used in both
terms?)

463CS 538 Spring 2002
©

Expressing Negative
Information

Sometimes it is useful to state rules
about what can’t be true. This allows
us to avoid long and fruitless
searches.
fail is a goal that always fails. It can
be used to represent goals or results
that can never be true.
Assume we want to optimize our
grandMotherOf rules by stating that
a male can never be anyone’s
grandmother (and hence a complete
search of all motherOf and
fatherOf relations is useless).
A rule to do this is
grandMotherOf(X,GM) :-
 male(GM), fail.

464CS 538 Spring 2002
©

This rule doesn’t do quite what we
hope it will!
Why?
The standard approach in Prolog is to
try other rules if the current rule fails.
Hence we need some way to “cut off”
any further backtracking once this
negative rule is found to be
applicable.
This can be done using
 grandMotherOf(X,GM) :-
 male(GM),!, fail.

465CS 538 Spring 2002
©

Other Extra-Logical
Operators

• assert and retract

These operators allow a Prolog
program to add new rules during
execution and (perhaps) later remove
them. This allows programs to learn
as they execute.
• findall

Called as findall(X,goal,List)
where X is a variable in goal . All
possible solutions for X that satisfy
goal are found and placed in List .
For example,
findall(X,
(append(_,[X|_],[-1,2,-3,4]),(X<0)),
 L).

L = [-1,-3]

466CS 538 Spring 2002
©

• var and nonvar

var(X) tests whether X is unbound
(free).
nonvar(Y) tests whether Y is bound
(no longer free).
These two operators are useful in
tailoring rules to particular
combinations of bound and unbound
variables.
For example, the rule
grandMotherOf(X,GM) :-
 male(GM),!, fail.

might backfire if GMis not yet bound.
We could set GM to a person for
whom male(GM) is true, then fail
because we don’t want grandmothers
who are male!

467CS 538 Spring 2002
©

To remedy this problem. we use the
rule only when GM is bound. Our rule
becomes
grandMotherOf(X,GM) :-
 nonvar(GM), male(GM),!, fail.

468CS 538 Spring 2002
©

An Example of Extra-Logical
Programming

Factorial is a very common example
program. It’s well known, and easy to
code in most languages.
In Prolog the “obvious” solution is:
fact(N,1) :- N =< 1.

fact(N,F) :- N > 1, M is N-1,
 fact(M,G), F is N*G.

This definition is certainly correct. It
mimics the usual recursive solution.
But,
in Prolog “inputs” and “outputs” are
less distinct than in most languages.
In fact, we can envision 4 different
combinations of inputs and outputs,
based on what is fixed (and thus an

469CS 538 Spring 2002
©

input) and what is free (and hence is
to be computed):

1. N and F are both ground (fixed). We
simply must decide if F=N!

2. N is ground and F is free. This is
how fact is usually used. We must
compute an F such that F=N!

3. F is fixed and N is free. This is an
uncommon usage. We must find an
N such that F=N!, or determine that
no such N is possible.

4. Both N and F are free. We generate,
in sequence, pairs of N and F values
such that F=N!

470CS 538 Spring 2002
©

Our solution works for combinations
1 and 2 (where N is fixed), but not
combinations 3 and 4. (The problem
is that N =< 1 and N > 1 can’t be
satisfied when N is free).
We’ll need to use nonvar and ! to
form a solution that works for all 4
combinations of inputs.
We first handle the case where N is
ground:
fact(1,1).
fact(N,1) :- nonvar(N), N =< 1, ! .
fact(N,F) :- nonvar(N) , N > 1, !,
M is N-1, fact(M,G), F is N*G, ! .

The first rule handles the base case of
N=1.
The second rule handles the case of
N<1.

471CS 538 Spring 2002
©

The third rule handles the case of
N >1 . The value of F is computed
recursively. The first ! in each of
these rules forces that rule to be the
only one used for the values of N that
match. Moreover, the second ! in the
third rule states that after F is
computed, further backtracking is
useless; there is only one F value for
any given N value.
To handle the case where F is bound
and N is free, we use
fact(N,F) :- nonvar(F), !,
 fact(M,G), N is M+1, F2 is N*G,
 F =< F2, !, F=F2.

In this rule we generate N, F2 pairs
until F2 >= F . Then we check if
F=F2. If this is so, we have the N we
want. Otherwise, no such N can exist
and we fail (and answer no).

472CS 538 Spring 2002
©

For the case where both N and F are
free we use:
fact(N,F) :- fact(M,G), N is M+1,
 F is N*G.

This systematically generates N, F
pairs, starting with N=2, F=2 and then
recursively building successor values
(N=3, F=6, then N=4, F=24 , etc.)

