Parallelism in Prolog

One reason that Prolog is of interest
to computer scientists is that its
search mechanism lends itself to
parallel evaluation.

In fact, it supports two different
kinds of parallelism:

. AND Parallelism
. OR Parallelism

S 538 Spring 2007 473

An example of this sort of and
parallelism is

member(X,listl),

memberl(X,list2), isPrime(X).

Here we can let member(X,list1)
select an X value, then test
memberl(X,list2) and isPrime(X)
in parallel. If one or the other fails,
we just select another X from list1
and retest member1(X,list2) and
isPrime(X) in parallel.

€S 538 Spring 2002 475

And Parallelism

When we have a goal that contains
subgoals connected by the “,” (And)
operator, we may be able to utilize
“and parallelism.”

Rather than solve subgoals in
sequence, we may be able to solve
them in parallel if bindings can be
properly propagated.

Thus in
a(Xx), b(X,Y), c(X,2), d(Y,2).

we may be able to first solve a(X) ,
binding X, then solve b(X,Y) and
c(X,z) inparallel, binding Y and z,
then finally solve d(Y,z)

€S 538 Spring 2007 474

OR Parallelism

When we match a goal we almost
always have a choice of several rules
or facts that may be applicable.
Rather than try them in sequence, we
can try several matches of different
facts or rules in parallel. This is “or
parallelism.”

Thus given

a(X) :- b(X).

a(y) :- c(Y).

when we try to solve

a(10).

we can simultaneously check both
b(10) and c(10) .

€S 538 Spring 2002 476

Recall our definition of

member(X,L) :-
append(P,[X|S],L).

where append is defined as
append([],L,L).
append([X|L1],L2,[X]|L3]) :-
append(L1,L2,L3).

Assume we have the query

| ? member(2,[1,2,3]).

This immediately simplifies to
append(P,[2]S],[1,2,3]).

Now there are two append
definitions we can try in parallel:
(1) match append(P,[2|S],[1,2,3])

with append([],L,L) . This requires
that [2|S] =1[1,2,3] , which must
fail.

(2) match append(P,[2|S],[1,2,3])

with append([X|L1],L2,[X,L3])

S 538 Spring 2007 477

Speculative Parallelism

Prolog also lends itself nicely to
speculative parallelism. In this form of
parallelism, we “guess” or speculate
that some computation may be
needed in the future and start it early.
This speculative computation can
often be done in parallel with the
main (non-speculative) computation.

Recall our example of

member(X,listl),

memberl(X,list2), isPrime(X).

After member(X,list1) has
generated a preliminary solution for
X, it is tested (perhaps in parallel) by
memberl(X,list2) and

isPrime(X)

But this value of X may be rejected by
one or both of these tests. If it is,

€S 538 Spring 2002 479

This requires that P=[X|L1]
[2|S]=L2 |, [1,2,3]=[X,L3]
Simplifying, we require that X=1,
P=[1|L1] , L3=[2,3]

Moreover we must solve
append(L1,L2,L.3) which simplifies
to append(L1,[2|S],[2,3])

We can match this call to append in
two different ways, so or parallelism
can be used again.

When we try matching
append(L1,[2|S],[2,3])
append([],L,L) we get
[2|S]=[2,3] , which is satisfiable if S
is bound to [3] . We therefore signal
back that the query is true.

against

CS 538 Sprin

g 2007 478

we'll ask member(Xlist1) to find a
new binding for X. If we wish, this
next binding can be generated
speculatively, while the current value
of X is being tested. In this way if the
current value of X is rejected, we’ll
have a new value ready to try (or
know that no other binding of X is
possible).

If the current value of X is accepted,
the extra speculative work we did is
ignored. It wasn’t needed, but was
useful insurance in case further X
bindings were needed.

S 538 Spring 200 480

Reading Assignment

. Java for C++ Programmers
(linked from class web page)

. Scott: Chapter 10

S 538 Spring 2002

481

