
473CS 538 Spring 2002
©

Parallelism in Prolog
One reason that Prolog is of interest
to computer scientists is that its
search mechanism lends itself to
parallel evaluation.
In fact, it supports two different
kinds of parallelism:
• AND Parallelism

• OR Parallelism

474CS 538 Spring 2002
©

And Parallelism
When we have a goal that contains
subgoals connected by the “,” (And)
operator, we may be able to utilize
“and parallelism.”
Rather than solve subgoals in
sequence, we may be able to solve
them in parallel if bindings can be
properly propagated.
Thus in
a(X), b(X,Y), c(X,Z), d(Y,Z).

we may be able to first solve a(X) ,
binding X, then solve b(X,Y) and
c(X,Z) in parallel, binding Y and Z,
then finally solve d(Y,Z) .

475CS 538 Spring 2002
©

An example of this sort of and
parallelism is
member(X,list1),
 member1(X,list2), isPrime(X).

Here we can let member(X,list1)
select an X value, then test
member1(X,list2) and isPrime(X)
in parallel. If one or the other fails,
we just select another X from list1
and retest member1(X,list2) and
isPrime(X) in parallel.

476CS 538 Spring 2002
©

OR Parallelism
When we match a goal we almost
always have a choice of several rules
or facts that may be applicable.
Rather than try them in sequence, we
can try several matches of different
facts or rules in parallel. This is “or
parallelism.”
Thus given
 a(X) :- b(X).

 a(Y) :- c(Y).

when we try to solve
a(10).

we can simultaneously check both
b(10) and c(10) .

477CS 538 Spring 2002
©

Recall our definition of
member(X,L) :-
 append(P,[X|S],L).

where append is defined as
append([],L,L).

append([X|L1],L2,[X|L3]) :-
 append(L1,L2,L3).

Assume we have the query
| ? member(2,[1,2,3]).

This immediately simplifies to
append(P,[2|S],[1,2,3]).

Now there are two append
definitions we can try in parallel:
(1) match append(P,[2|S],[1,2,3])

with append([],L,L) . This requires
that [2|S] = [1,2,3] , which must
fail.
(2) match append(P,[2|S],[1,2,3])

with append([X|L1],L2,[X,L3]) .

478CS 538 Spring 2002
©

This requires that P=[X|L1] ,
[2|S]=L2 , [1,2,3]=[X,L3] .
Simplifying, we require that X=1,
P=[1|L1] , L3=[2,3] .
Moreover we must solve
append(L1,L2,L3) which simplifies
to append(L1,[2|S],[2,3]) .
We can match this call to append in
two different ways, so or parallelism
can be used again.
When we try matching
append(L1,[2|S],[2,3]) against
append([],L,L) we get
[2|S]=[2,3] , which is satisfiable if S
is bound to [3] . We therefore signal
back that the query is true.

479CS 538 Spring 2002
©

Speculative Parallelism
Prolog also lends itself nicely to
speculative parallelism. In this form of
parallelism, we “guess” or speculate
that some computation may be
needed in the future and start it early.
This speculative computation can
often be done in parallel with the
main (non-speculative) computation.
Recall our example of
member(X,list1),
 member1(X,list2), isPrime(X).

After member(X,list1) has
generated a preliminary solution for
X, it is tested (perhaps in parallel) by
member1(X,list2) and
isPrime(X) .
But this value of X may be rejected by
one or both of these tests. If it is,

480CS 538 Spring 2002
©

we’ll ask member(X,list1) to find a
new binding for X. If we wish, this
next binding can be generated
speculatively, while the current value
of X is being tested. In this way if the
current value of X is rejected, we’ll
have a new value ready to try (or
know that no other binding of X is
possible).
If the current value of X is accepted,
the extra speculative work we did is
ignored. It wasn’t needed, but was
useful insurance in case further X
bindings were needed.

481CS 538 Spring 2002
©

Reading Assignment
• Java for C++ Programmers

(linked from class web page)

• Scott: Chapter 10

