
482CS 538 Spring 2002
©

Java & Object-Oriented
Programming

Java is a fairly new and very popular
programming language designed to
support secure, platform-independent
programming.
It is a good alternative to C or C++,
trading a bit of efficiency for easier
programming, debugging and
maintenance.
Java is routinely interpreted (at the
byte-code level), making it
significantly slower than compiled C
or C++. However true Java compilers
exist, and are becoming more wide-
spread. (IBM’s Jalapeno project is a
good example). When compiled,
Java’s execution speed is close to that
of C or C++.

483CS 538 Spring 2002
©

Basic Notions
In Java data is either primitive or an
object (an instance of some class).
All code is written inside classes, so
Java programming consists of writing
classes.
Primitive data types are quite close to
those of C or C++:
boolean (not a numeric type)
char (Unicode, 16 bits)
byte

short

int

long (64 bits)
float

double

484CS 538 Spring 2002
©

Objects
• All Java objects are instances of classes.

• All objects are heap-allocated, with
automatic garbage collection.

• A reference to an object, in a variable,
parameter or another object, is actually a
pointer to some object allocated within
the heap.

• No explicit pointer manipulation
operations (like * or -> or ++) are
needed or allowed.

• Example:
class Point {int x,y;}

 Point data = new Point();

485CS 538 Spring 2002
©

• Declaring an object reference (like class
Point) does not automatically allocate
space for an object. The reference is
initialized to null unless an explicit
initializer is included.

• Fields are accessed just as they are in C:
data.x references field x in object
data .

• Object references are automatically
checked for validity (null or non-null).
Hence
data.x = 0;
forces a run-time exception if data
contains null rather than a valid object
reference.

486CS 538 Spring 2002
©

• Java makes it impossible for an object
reference to access an illegal address. A
reference is either null or a pointer to a
valid, type-correct object in the heap.
(This makes Java programs far more
secure and reliable than C or C++
programs).

487CS 538 Spring 2002
©

Class Members
Classes contain members. Class
members are either fields (data) or
methods (functions).
Example:
 class Point {

 int x,y;

 void clear() {x=0; y=0;}
 }

 Point d = new Point():

 d.clear();

A special method is a constructor.
A constructor has no result type. It is
used only to define the initialization
of an object after the object has been
created.

488CS 538 Spring 2002
©

Constructors may be overloaded.

class Point {

 int x,y;

 Point() {x=0; y=0;}

 Point(int xin, int yin) {

 x = xin; y = yin;
 }
}

489CS 538 Spring 2002
©

Static Members
Class members may be static.
A static member is allocated only
once—for all instances of the class.
Ordinary members (called instance
members) apply only to a particular
class instance (i.e., only one object
created from the class definition).
class Point {

 int x,y;
 static int howMany = 0;

 Point() {x=0; y=0;
 howMany++;}

 static void reset() {

 howMany = 0;
 }
}

490CS 538 Spring 2002
©

Static member functions (methods)
may not access non-static data.
(Why?)
Static members are accessed using a
class name rather than the name of
an object reference.
For example,
 Point.reset();

491CS 538 Spring 2002
©

Visibility of Class Members
Class members may be declared as
public, private or protected.
Public members may be accessed from
outside a class.
Private members of a class may be
accessed only from with the class
itself.
Protected members may be accessed
only from with the class itself or from
within one of its subclasses.
Members nor marked public, private
or protected are shared at the
package level—similar to C++’s friend
mechanism.

492CS 538 Spring 2002
©

Example:
 class Customer {

 int id;

 private int pinCode;

}

Customer me = new Customer();

me.id = 1234; //OK

me.pinCode = 7777;
//Compile-time error

In a class, a special method, main ,
declared as
 static public void
 main(String[] args)

is automatically executed when a
class is run.
main is very useful as a “test driver”
for auxiliary and library classes.

493CS 538 Spring 2002
©

Final Members
A field may be declared final making
it effectively a constant.
class Point {

 int x,y;

 static final Point origin
= new Point(0,0);

 Point(int xin, int yin) {

 x = xin; y = yin;
 }
}

Final fields may be used to create
constants within a class:
class Card {
 final static int Clubs = 1;
 final static int Diamonds = 2;
 final static int Hearts = 3;
 final static int Spades = 4;
 int suit = Spades;
}

494CS 538 Spring 2002
©

Inside a class suit names are available
for use without qualification. E.g.,
int suit = Spades;

Outside a class, the field names must
be qualified using the class name:
Card c = new Card();

c.suit = Card.Clubs;

Methods may also be marked as final.
This forbids redeclaration in a
subclass, allowing a more efficient
implementation. Security may also be
improved if a key method is known to
be unchangeable.

495CS 538 Spring 2002
©

Java Arrays
In Java, arrays are implemented as a
special kind of class. Arrays of
primitive types are implemented as an
object that contains a block of values
within it. Arrays of objects are
implemented as an object that
contains a block of object references
within it. Allocating an array of
objects does not allocate the objects
themselves. Hence within an array of
objects, some positions may reference
actual objects while other may
contain null (this can be
advantageous) if objects are large.
Multi-dimensional arrays are arrays
of arrays. Arrays within an array need
not all have the same size.
Hence we may see

496CS 538 Spring 2002
©

int[][] TwoDim = new int[3][];

TwoDim[0] = new int[1];

TwoDim[1] = new int[2];

TwoDim[2] = new int[3];

The size of an array is part of its
value; not its type.
Thus
int [] A = new int[10];

int [] B = new int[5];

A = B;

is valid.
Pascal showed that making an array’s
size part of its type is undesirable.
(Why?)
Still, forcing an array to have a fixed
size can be necessary (e.g., an array
indexed by months). (How do we
simulate a fixed-size array?).

